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Scholz (2018) addressed this question and found, using their hedonic regression model, that it was not 
necessary to use spatial coordinates to obtain satisfactory property price indexes for Sydney. However, 
their hedonic regression model did not estimate separate land and structure price indexes for residential 
properties. To construct national balance sheet estimates, it is necessary to have separate land and struc-
ture price indexes. The present paper addresses the Hill and Scholz question in the context of providing 
satisfactory residential land price indexes. The spatial coordinate model used in the present paper is a 
modification of Colwell’s (1998) spatial interpolation method. The modification can be viewed as a 
general nonparametric method for estimating a function of two variables.
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1. I ntroduction

It is a difficult task to construct constant quality price indexes for residential 
(and commercial) properties. Properties with structures on them consist of two 
main components: the land component and the structure component. The prob-
lem is that each property has a unique location (which affects the price of the land 
component), and given the fact that the same property is not sold in every period, 
it is difficult to apply the usual matched model methodology when constructing 
constant quality price indexes. Bailey et al. (1963) developed the repeat sales meth-
odology in an attempt to apply the matched model methodology to the problem 
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of constructing property price indexes, but this methodology ignores single sales 
of a property over the sample period. Thus, in particular, the sales of properties 
with new structures do not affect the resulting indexes, which could lead to biased 
indexes. Moreover, properties with structures on them do not retain the same qual-
ity over time due to structure depreciation or additions and renovations to the 
structure. Thus the matched model methodology for the construction of constant 
quality price indexes does not work well in the property price index context.

A possible solution to the above measurement problem is to use a hedonic 
regression model approach to the construction of property price indexes.1 This 
approach regresses the sale price of a property (or the logarithm of the sale price) 
on various characteristics of the properties in the sample. An important price 
determining characteristic of a property is its location. The location of a property 
can be described by its neighborhood (a local government area or a postal code) or 
by its latitude and longitude (the spatial coordinates of the property). Most hedonic 
property regressions use the former approach for describing the location of a prop-
erty, but in recent years, the availability of spatial coordinate information has 
grown. Colwell (1998) was an early pioneer in the use of spatial coordinate infor-
mation in a property price regression and more recently, Hill and Scholz (2018) 
used spatial coordinates to model Sydney house prices.

The main question that this paper addresses is the following one: can satis-
factory residential property price indexes be constructed using hedonic regression 
techniques where location effects are modeled using local neighborhood dummy 
variables or is it necessary to use spatial coordinates to model location effects? Hill 
and Scholz (2018) addressed this question and found that it was not necessary to 
use spatial coordinates to obtain satisfactory property price indexes for Sydney. 
However, their hedonic regression model did not estimate separate land and struc-
ture price indexes for residential properties. To construct national balance sheet 
estimates, it is necessary to have separate land and structure price indexes. The 
present paper addresses the Hill and Scholz question in the context of providing 
satisfactory residential land price indexes. The spatial coordinate model used in the 
present paper is a modification of Colwell’s (1998) spatial interpolation method. 
The modification can be viewed as a general nonparametric method for estimating 
a function of two variables.

A basic building block in Colwell’s method is a method of bilinear interpola-
tion over a square that was developed in the mathematics literature. We explain this 
method in Section 2.

In Section 3, we explain how this bilinear method of interpolation over a 
square can be extended to a method of interpolation over a grid of squares. We 
then follow the example of Poirier (1976) and Colwell (1998) and convert the inter-
polation method into an econometric estimation model. The resulting method will 
be used in later sections to model the land price of a property as a function of its 
spatial coordinates.

In Appendix B, we compare Colwell’s spatial coordinate model with the penal-
ized least squares approach used by Hill and Scholz (2018) in their study of Sydney 

1For expositions of the hedonic regression approach to the construction of constant quality price 
indexes, see de Haan and Diewert (2013) and Hill (2013).
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property prices. We note that the “computationally demanding and complex esti-
mation procedures” nature of the Hill and Scholz methodology will deter national 
statistical agencies from adopting their approach.

Section 4 describes our data on sales of residential properties in Tokyo over 
the 44 quarters starting in the first quarter of 2000 and ending in the last quarter 
of 2010. We used the same data as we used in Diewert and Shimizu (2015a) on sales 
of residential houses in Tokyo, except the present study added additional data on 
sales of residential properties with no structures on the land plot.

Section 5 sets out the builder’s model approach to hedonic property price 
regressions. This approach uses the property’s sale price as the dependent variable 
and splits up property value into the sum of the land and structure components. 
This additive decomposition approach has a long history in the property hedonic 
regression literature but what is relatively recent is the use of an exogenous con-
struction cost price series to value the structure component of the decomposition. 
It is this use of an exogenous index that allows us to decompose property value into 
plausible land and structure components.2 This section uses both the nonparamet-
ric spatial coordinate approach due to Colwell as well as the neighborhood 
approach to model the influence of location on land prices. We look at the result-
ing land price indexes as we increase the size of the grid, and we find that there is 
little change in these land price indexes over a reasonable range of alternative grid 
sizes. Section 6 adds more characteristics to the model and again looks at how the 
resulting land prices change as we add more characteristics. The details of the var-
ious models that used additional characteristics can be found in Appendix C.

Section 7 compares the overall property price indexes generated by the import-
ant models explained in the previous sections (instead of comparing just the land 
price components of residential property sales). For comparison purposes, we also 
compared our best “model results with a traditional” hedonic property price 
hedonic regression which regresses the logarithm of property price on a linear 
combination of the property characteristics and time dummy variables.3 This tra-
ditional approach does not generate reasonable subindexes for land and structures, 
but it can generate reasonable results for an overall property price index.

Section 8 concludes. Appendix A contains the results of selected regression 
models as well as the data underlying the charts in the main text.

2. B ilinear Interpolation on the Unit Square

Our task in this section is to explain how a particular method of bilinear 
interpolation works for functions of two variables defined on the unit square. This 
method of interpolation is a basic building block that can be used to construct a 
method for approximating a function of two variables that is defined over the unit 
square. Suppose that f(x, y) is a continuous function of two variables, x and y, 

2The basic idea of using an exogenous cost index can be found in Diewert (2010, pp. 33–35). See 
also Diewert et al. (2015).

3This traditional hedonic regression approach can be traced back to Court (1939).
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where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Suppose that f takes on the values � ij at the corners 
of the unit square; that is, we have:

Assuming that we know (or can estimate) the heights of the function at the corners 
of the unit square, we look for an approximating continuous function that satisfies 
counterparts to equations (1) at the corners of the unit square and is a linear func-
tion along the four line segments that make up the boundary of the unit square. 
Colwell (1998,  p. 89) showed that the following quadratic function of x and y, 
g(x, y), satisfies these requirements:4

Colwell (1998, p. 89) also showed that g(x, y) is a weighted average of �00, �10, �01, 
and �11 for (x, y) belonging to the unit square.5 To gain more insights into the prop-
erties of g(x, y), rewrite g(x, y) as follows:

Thus if  �00 + �11 = �01 + �10, then g(x, y) is a linear function over the unit square. 
However, if  �00 + �11 ≠ �01 + �10, then g(x, y) is a saddle function; that is, the deter-
minant of the matrix of second-order partial derivatives of g(x, y), ∇2g(x, y), is 
equal to − [(𝛾00 + 𝛾11) − (𝛾01 + 𝛾10)]

2 < 0, and hence ∇2g(x, y) has one positive and 
one negative eigenvalue.

In the following section, we will follow the example of Colwell (1998, p. 91) 
and show how the function g(x, y) defined over the unit square can be extended to 
define a continuous function over a grid of squares.

3. B ilinear Spline Interpolation over a Grid

To explain how Colwell’s method works over a grid of squares, we will explain 
his method for the case of a 3 × 3 grid of squares. The method will be applied to 
the variables X and Y that are defined over a rectangular region in X, Y space. We 
assume that X and Y satisfy the following restrictions:

where Xmin < Xmax and Ymin < Ymax. We translate and scale X and Y so that the 
range of the transformed X and Y, x and y, lie in the interval joining 0 and 3; that 
is, define x and y as follows:

(1) �00≡ f (0, 0);�10≡ f (1, 0);�01≡ f (0, 1);�11≡ f (1, 1).

4The function g(x, y) defined by (2) is a special case of the bilinear function defined in matrix alge-
bra textbooks such as Mirsky (1955, p. 353). Poirier (1976, p. 61) also defined the counterpart to (2) that 
is defined over a rectangle. The bilinear interpolation method defined by (2) is widely used in the engi-
neering and applied mathematics literature; see Wikipedia (2019).

(2) g(x, y)≡ �00(1−x)(1−y)+�10x(1−y)+�01(1−x)y+�11xy.

5It is straightforward to show that the sum of  the nonnegative weights 
(1 − x)(1 − y), x(1 − y), (1 − x)y , and xy is equal to 1. Thus g(x,  y) will satisfy the inequalities 
min{�00, �10, �01, �11} ≤ g(x, y) ≤ max{�00, �10, �01, �11}.

(3) g(x, y)= �00+ (�10−�00)x+ (�01−�00)y+ [(�00+�11)− (�01+�10)]xy.

(4) Xmin≤X ≤Xmax;Ymin≤Y ≤Ymax,

(5) x≡3(X −Xmin)∕(Xmax−Xmin); y≡3(Y −Ymin)∕(Ymax−Ymin).
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Define the following three dummy variable (or indicator) functions of  x:

Note that if  0 ≤ x ≤ 3, then D1(x) +D2(x) +D3(x) = 1, so that the three dummy 
variable functions sum to 1 if  x lies in the interval between 0 and 3.

The above definitions can be used to define the three dummy variable functions 
of  y, D1(y),D2(y), and D3(y), where y replaces x in definitions (6). Finally, a set of 
3 × 3 = 9 bilateral dummy variable functions, Dij(x, y), is defined as follows:

The domain of definition for the Dij(x, y) is the squareS3 in two-dimensional space 
with each side of length 3; that is, S3 ≡ {(x, y): 0 ≤ x ≤ 3;0 ≤ y ≤ 3}. Note that for 
any (x,  y) belonging to S3, we have 

∑

3
i=1

∑

3
j=1

Dij(x, y) = 1. Thus the bilateral 

dummy variable functions Dij(x, y) will allocate any (x, y) ∈ S3 to one of the nine 
unit square cells that make up S3. Denote the cell that corresponds to x and y such 
that Dij(x, y) = 1 as Cij for i, j = 1, 2, 3. Thus the three cells in the grid of nine cells 
that correspond to y values that satisfy 0 ≤ y < 1 are C11,C21, and C31. The three 
cells that correspond to y values such that 1 ≤ y < 2 are C12,C22, and C32 and the 
three cells that correspond to y values such that 2 ≤ y ≤ 3 are C13,C23, and C33.

Let f(x, y) be the function defined over S3 that we wish to approximate. Define 
the heights� ij of  the function f(x, y) at the 16 vertices of the grid of unit area cells 
as follows:

Define the Colwell (1998,  pp. 91–92) bilinear spline interpolating approxima-
tiong3(x, y) to f(x, y) for any (x, y) ∈ S3 as follows:

It can be verified that g3(x, y) is a continuous function of x and y over S3, and 
g3(x, y) is equal to the underlying function f(x, y) when (x, y) is a vertex point of 
the grid; that is, we have the following equalities for the 16 vertex points in S3:

(6)
D1(x)≡1 if 0≤x<1;D1(x)≡0 if x≥1;

D2(x)≡1 if 1≤x<2;D2(x)≡0 if x<1 or x≥2;

D3(x)≡1 if 2≤x≤3;D3(x)≡0 if x<2.

(7) Dij(x, y)≡Di(x)Dj(y); i=1, 2, 3; j=1, 2, 3.

(8) � ij≡ f (i, j); i=0, 1, 2, 3; j=0, 1, 2, 3.

(9)

g3(x, y) ≡D11(x, y)[�00(1−x)(1−y)+�10(x−0)(1−y)+�01(1−x)(y−0)+�11xy]

+D21(x, y)[�10(2−x)(1−y)+�20(x−1)(1−y)+�11(2−x)(y−0)+�21xy]

+D31(x, y)[�20(3−x)(1−y)+�30(x−2)(1−y)+�21(3−x)(y−0)+�31xy]

+D12(x, y)[�01(1−x)(2−y)+�11(x−0)(2−y)+�02(1−x)(y−1)+�12xy]

+D22(x, y)[�11(2−x)(2−y)+�21(x−1)(2−y)+�12(2−x)(y−1)+�22xy]

+D32(x, y)[�21(3−x)(2−y)+�31(x−2)(2−y)+�22(3−x)(y−1)+�32xy]

+D13(x, y)[�02(1−x)(3−y)+�12(x−0)(3−y)+�03(1−x)(y−2)+�13xy]

+D23(x, y)[�12(2−x)(3−y)+�22(x−1)(3−y)+�13(2−x)(y−2)+�23xy]

+D33(x, y)[�22(3−x)(3−y)+�32(x−2)(3−y)+�23(3−x)(y−2)+�33xy].

(10) g3(i, j)= � ij≡ f (i, j); i=0, 1, 2, 3; j=0, 1, 2, 3.
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For each square of unit area in the grid, it can be seen that g3(x, y) behaves like 
the bilinear interpolating function g(x, y) that was defined by (2) in the previous 
section. Thus if  (x, y) belongs to the cell Cij where i and j are equal to 1, 2 or 3, 
then g3(x, y) is bounded from below by the minimum of the four vertex point val-
ues � i−1,j−1, � i,j−1, � i−1,j , � i,j and bounded from above by the maximum of the four 
vertex point values � i−1,j−1, � i,j−1, � i−1,j , � i,j.

Following Colwell (1998,  p. 89), if  we set y = j where j = 0, 1, 2 or 3, then 
the resulting function of x, g3(x, j), is a linear spline function in x between 0 and 
3; that is, g3(x, j) is a continuous, piecewise linear function of x that has three 
(joined) linear segments that can change their slopes at the break points x = 1 and 
x = 2 . Similarly, if  we set x = i where i = 0, 1, 2, or 3, then the resulting function of 
y, g3(i, y), is also a linear spline function in y between 0 and 3. Thus we can view 
g3(x, y) as an interpolating function that merges these linear spline functions in the 
x and y directions into a consistent continuous function of two variables, where the 
interpolating function is equal to the function of interest at the 16 vertex points of 
the grid.

Following Poirier (1976, pp. 11–12) and Colwell (1998), we can move from the 
interpolation model defined by (9) to an econometric estimation model. Thus sup-
pose that we can observe x and y for N observations, say (xn, yn) for n = 1,…,N . 
Suppose also that we can observe f (xn, yn) for n = 1,…,N. Finally, suppose that 
we can approximate the function f(x, y) by g3(x, y) over S3. Let � ≡ [�00, �10,…, �33] 
be the vector of the 16 � ij which appear in (9) and rewrite g3(x, y) as g3(x, y, �). 
Now view � as a vector of parameters that appear in the following linear regression 
model:

If  we are willing to assume that the approximation errors �n are independently 
distributed with 0 means and constant variances, the unknown parameters � ij in 
(11) (which are the heights of the true” function f(x, y) at the vertices in the grid) 
can be estimated by a least squares regression. It can be seen that this method for 
fitting a two-dimensional surface over a bounded set is essentially a nonparametric 
method. If  the number of observations N is sufficiently large and the observations 
are more or less uniformly distributed over the grid, then we can make the grid 
finer and finer and obtain ever closer approximations to the true underlying 
function.6

To see how this nonparametric approach to the estimation of a surface could 
be applied in the context of sales of land plots in a geographical area, suppose 
that in a particular time period, we have information on the selling price of N land 
plots. Suppose that the selling price of land plot n is Pn and the area of the property 
is Ln square meters. Suppose also that we have data on the latitude and longitude of 
property n, Xn, and Yn for n = 1,…,N. Translate and scale these spatial coordinates 
into the variables xn and yn using definitions (4) and (5) above. We suppose that N 

(11) zn=g3(xn, yn, �)+�n; n=1,…,N .

6If  the dependent variable is observed with random errors, then the method for fitting the surface 
can also be regarded as a smoothing method. The smoothing parameter is the number of cells in the 
grid, k2 (or k can be used as the smoothing parameter); the smaller the number of cells, the smoother 
will be the estimated gk(x, y) function. For a discussion of smoothing methods and alternative smooth-
ing parameters, see Buja et al. (1989).
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is large enough and the observations are dispersed through all nine cells in the 3 × 3 
geographical grid. An approximation to the true land price surface in the geograph-
ical area under consideration (which gives the price of land per meter squared as 
a function of the transformed spatial coordinates) can be generated by estimating 
the following linear regression model:

where the g3(xn, yn, �) are defined by (9) for each (xn, yn) in the sample of observa-
tions. Thus estimates for the 16 unknown height parameters � ij in equations (12) 
can be obtained by solving a simple least squares minimization problem.

If observations are plentiful, then the grid can be made finer. Thus the 3 × 3 
grid could be replaced by a k × k grid where k is an arbitrary positive integer. In 
this case, definitions (5) are replaced by x ≡ k(X −Xmin)∕(Xmax −Xmin) and 
y ≡ k(Y −Ymin)∕(Ymax −Ymin). Definitions (6)–(9) can readily be modified to 
define the approximating function gk(x, y, �) in place of g3(x, y, �). Of course the 
new parameter vector � in gk(x, y, �) will have dimension (k + 1)2 in place of the 
parameter vector � in g3(x, y, �) which had dimension 42 = 16. Thus Colwell (1998) 
realized that the well-known bilinear interpolation function g(x, y) defined by (2) 
could be used as a basic building block in a powerful nonparametric method for 
approximating an arbitrary continuous function of two variables.7

However, Colwell did not exhibit the explicit representation for g3(x, y) defined 
by (9), so it is not clear exactly how he defined his linear regression model. Colwell 
(1998, p. 92) also made the following statement about his method of parameteriza-
tion: As indicated earlier, one of the location variables must be omitted if  perfect 
multicollinearity is to be avoided. Finally, it is not necessary to have data points 
within every section.” Thus he seemed to suggest that one of the � ij on the right-
hand side of (9) needed to be omitted to avoid perfect multicollinearity. However, 
such an omission would seem to destroy the flexibility of his method; that is, set-
ting say � ij = 0 means that we would no longer have gk(i, j) = f (i, j). Moreover, as 
we shall see later in our empirical application of his method, problems can arise if  
some cells have no observations. Thus, although the spirit of his model is clear, the 
exact details on how to implement it are not spelled out in his paper.8

(12) Pn∕Ln=g3(xn, yn, �)+�n; n=1,…,N ,

7Colwell (1998, p. 87) summarized his method as follows: A simple, non-parametric approach is 
needed—one that fits any function with the fewest possible restrictions. The purpose of this article is to 
describe a method for using a single, standard OLS regression to estimate a continuous price function 
in space that can approximate any shape. The cost of the method developed here is found in terms of 
degrees of freedom. It achieves flexibility by requiring large numbers of observations. Colwell (1998, p. 
88) after noting that his approximating function was differentiable in the interior of each square in the 
grid but not necessarily at boundary points of each square offered the following view on the importance 
of continuity versus differentiability: This tradeoff of continuity for differentiability is worth accepting 
because continuity is compelling, whereas the worth of differentiability is dubious. Continuity of the 
price function is important because markets produce continuity. Discontinuities are destroyed by arbi-
trage. We agree with his assessment that differentiability of the approximating surface is not essential.

8Poirier (1976, pp. 59–62) developed an approach that is equivalent to our Colwell-based approach 
except that his parameterization of the approximating function is in terms of changes in levels rather 
than in the levels themselves. Thus his interaction terms are difficult to interpret. He also did not deal 
with the difficulties associated with empty cells.
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In Appendix B, we compare Colwell’s method for estimating a surface 
with methods that are based on penalized least squares, which is the method 
used by Hill and Scholz (2018). Penalized least squares methods for fitting 
a surface have a computationally demanding and complex estimation proce-
dures character to them, which means that national statistical agencies will 
not be able to use them as they are difficult to explain to the public. On the 
contrary, our adaptation of  Colwell’s method is very intuitive and can readily 
be explained to users.

4. T he Tokyo Residential Property Sales Data

Our basic data set consists of quarterly data on V (the selling price of a resi-
dential property in Tokyo), L (the land area of the property in square meters), S 
(the floor space area of the structure if  any on the land plot), A (the age in years of 
the structure if  any on the land plot), the location of the property (specified in 
terms of longitude x and latitude y and in terms of the 23 Wards or local neighbor-
hoods of Tokyo), and some additional characteristics to be explained below. These 
data were obtained from a weekly magazine, Shukan Jutaku Joho (Residential 
Information Weekly) published by Recruit Co., Ltd., one of the largest vendors of 
residential listings information in Japan. The Recruit data set covers the 23 special 
wards of Tokyo for the period 2000–2010, including the mini-bubble period in the 
middle of 2000s and its later collapse caused by the Great Recession. Shukan 
Jutaku Joho provides time series of housing prices from the week when it is first 
posted until the week it is removed due to its sale.9 We only used the price in the 
final week because this can be safely regarded as sufficiently close to the contract 
price.10

After range deletions, there were a total of 5580 observations with structures 
on the property in our sample of sales of residential property sales in the Tokyo 
area over the 44 quarters covering 2000–2010.11 In addition, we had 8493 observa-
tions on residential properties with no structure on the land plot.12 Thus there were 
a total of 14,073 properties in our sample. The variables used in our regression 
analysis to follow and their units of measurement are as follows:

9There are two reasons for the listing of a unit being removed from the magazine: a successful deal 
or a withdrawal (i.e., the seller gives up looking for a buyer and thus withdraws the listing). We were 
allowed access to information regarding which the two reasons applied for individual cases, and we 
discarded those transactions where the seller withdrew the listing.

10Recruit Co., Ltd. provided us with information on contract prices for about 24 percent of all 
listings. Using this information, we were able to confirm that prices in the final week were almost always 
identical with the contract prices; see Shimizu et al. (2016).

11We deleted 9.2 percent of the observations with structures because they fell outside our range 
limits for the variables V, L, S, A, NB, and W. It is risky to estimate hedonic regression models over 
wide ranges when observations are sparse at the beginning and end of the range of each variable. The a 
priori range limits for these variables were as follows: 1.8 ≤ V ≤ 20; 0.5 ≤ S ≤ 2.5; 0.5 ≤ L ≤ 2.5; 
1 ≤ A ≤ 50; 2 ≤ NB ≤ 8; 25 ≤W ≤ 90. For properties with no structure, we set the corresponding S 
equal to 0.

12The large number of plots with no structures can be explained by the preference of Japanese 
buyers of residential properties to construct their own house. Thus sellers of residential properties that 
have a relatively old structure on the property tend to demolish the structure and sell the property as a 
land-only property.
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V    = The value of the sale of the house in 10,000,000 Yen;
S       = Structure area (floor space area) in units of 100 m2;
L     = Lot area in units of 100 m2;
A     = Approximate age of the structure in years;
NB  = Number of bedrooms;
W    = Width of the lot in 1/10 m;
TW = Walking time in minutes to the nearest subway station;
TT    = Subway running time in minutes to the Tokyo station from the nearest station
during the day (not early morning or night);
X     = Longitude of the property;
Y     = Latitude of the property;
PS    = Construction cost for a new structure in 100,000 Yen per m2.
In addition, we have the address of each property and so we can allocate each 

property to one of the 23 Wards of Tokyo. This information was used to construct 
Ward dummy variables for each property in our sample. The basic descriptive sta-
tistics for the above variables are listed in Table 1.

Thus over the sample period, the sample average sale price was approximately 
62.5 million Yen, the average structure space was 43.5 m2 (but for properties with 
structures, the average was 110 m2), the average lot size was 103.9 m2, the average 
age of the structure was 5.8 years (for properties with a structure, the average age 
was 14.7 years), the average number of bedrooms in the properties that had struc-
tures was 3.95, the average lot width was 4.7 m, the average walking time to the 
nearest subway station was 9.4 min and the average subway traveling time from the 
nearest station to the Tokyo Central station was 31.2 min.

As is usual in property regressions using L and S as independent variables, we 
can expect multicollinearity problems in a simple linear regression of V on S and 
L.13

13See Diewert (2010) and Diewert et al. (2011, 2015) for evidence on this multicollinearity problem 
using Dutch data.

TABLE 1  
Descriptive Statistics for the Variables

Name No. of Obs. Mean Std. Dev Min. Max.

V 14,073 6.2491 2.9016 1.8 20
S 14,073 0.43464 0.5828 0 2.4789
L 14,073 1.0388 0.3986 0.5 2.4977
A 14,073 5.8231 9.117 0 49.723
NB 14,073 1.5669 2.0412 0 8
W 14,073 46.828 12.541 25 90
TW 14,073 9.3829 4.3155 1 29
TT 14,073 31.244 7.3882 8 48
X 14,073 139.67 0.0634 139.56 139.92
Y 14,073 35.678 0.0559 35.543 35.816
P
S

14,073 1.7733 0.0294 1.73 1.85
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To eliminate a possible multicollinearity problem between the lot size L and 
floor space area S for properties with a structure and to make our estimates of 
structure value consistent with structure value estimates in the Japanese national 
accounts, we will assume that the value of a new structure in any quarter is equal 
to a Residential Construction Cost Index per m2 for Tokyo14 (equal to PSt for quar-
ter t) times the floor space area S of  the structure.

5. T he Basic Builder’s Model Using Spatial Coordinates to Model Land 
Prices

The builder’s model for valuing a residential property postulates that the value 
of a residential property is the sum of two components: the value of the land which 
the structure sits on and the value of the residential structure.

To justify the model, consider a property developer who builds a structure on 
a particular property. The total cost of the property after the structure is completed 
will be equal to the floor space area of the structure, say S square meters, times the 
building cost per square meter, � say, plus the cost of the land, which will be equal 
to the cost per square meter, � say, times the area of the land site, L. Now think of 
a sample of properties of the same general type, which have prices or values Vtn in 
period t15 and structure areas Stn and land areas Ltn for n = 1,…,N(t) where N(t) is 
the number of observations in period t. Assume that these prices are equal to the 
sum of the land and structure costs plus error terms �tn which we assume are inde-
pendently normally distributed with zero means and constant variances. This leads 
to the following hedonic regression model for period t where the �t and �t are the 
parameters to be estimated in the regression:16

Note that the two characteristics in our simple model are the quantities of 
land Ltn and the quantities of structure floor space Stn associated with property n 
in period t and the two constant quality prices in period t are the price of a square 
meter of land �t and the price of a square meter of structure floor space �t. Finally, 
note that separate linear regressions can be run of the form (13) for each period t 
in our sample.

The hedonic regression model defined by (13) applies to new structures. 
However, it is likely that a model that is similar to (13) applies to older structures 
as well. Older structures will be worth less than newer structures due to the depre-
ciation of the structure. Assuming that we have information on the age of the 

14This index was constructed by the Construction Price Research Association, which is now an 
independent agency but before 2012 was part of the Ministry of Land, Infrastructure, Transport, and 
Tourism (MLIT), a ministry of the Government of Japan. The quarterly values were constructed from 
the Monthly Residential Construction Cost index for Tokyo.

15The period index t runs from 1 to 44 where period 1 corresponds to Q1 of 2000 and period 44 
corresponds to Q4 of 2010.

16Other papers that have suggested hedonic regression models that lead to additive decompositions 
of property values into land and structure components include Clapp (1980), Francke and Vos (2004), 
Gyourko and Saiz (2004), Bostic et al. (2007), Davis and Heathcote (2007), Francke (2008), Diewert 
(2008, 2010), Rambaldi et al. (2010), and Diewert et al. (2011) (2015).

(13) Vtn=�tLtn+�tStn+�tn; t=1,…, 44; n=1,…,N(t).
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structure n at time t, say Atn = A(t, n) and assuming a geometric depreciation 
model, a more realistic hedonic regression model than that defined by (13) above is 
the following basic builder’s model:17

where the parameter � reflects the net depreciation rate as the structure ages one 
additional period.18 Note that (14) is now a nonlinear regression model whereas 
(13) was a simple linear regression model.

Note that the above model is a supply side model as opposed to the demand 
side model of  Muth (1971) and McMillen (2003). Basically, we are assuming com-
petitive suppliers of housing so that we are in Rosen’s (1974, p. 44) Case (a), where 
the hedonic surface identifies the structure of supply. This assumption is justified 
for the case of newly built houses but it is less well justified for sales of existing 
homes.19

As was mentioned in the previous section, we have 14,073 observations on 
sales of houses in Tokyo over the 44 quarters in years 2000–2010. Thus equations 
(14) above could be combined into one big regression and a single depreciation rate 
� could be estimated along with 44 land prices �t and 44 new structure prices �t, so 
that 89 parameters would have to be estimated. However, experience has shown 
that it is usually not possible to estimate sensible land and structure prices in a 
hedonic regression like that defined by (14) due to the multicollinearity between lot 
size and structure size.20 Thus to deal with the multicollinearity problem, we draw 
on exogenous information on new house building costs from the Japanese MLIT. 
Thus if  the sale of property n in period t has a new structure on it, we assume that 
the value of this new structure is equal to this measure of residential building costs 
pSt times the floor space area of the new structure, Stn. We apply this same line of 
reasoning to property sales that have old structures on them as well. Thus our new 
builder’s model replaces the parameter �t which appears in equations (14) with the 
exogenous official price PSt. Our new model becomes the following:

17This formulation follows that of Diewert (2008, 2010), Diewert et al. (2011, 2015), de Haan and 
Diewert (2013), and Diewert and Shimizu (2015a). It is a special case of Clapp’s (1980, p. 258) hedonic 
regression model. For applications of the builder’s model to condominium sales, see Diewert and 
Shimizu (2017a) and Burnett-Issacs et al. (2016).

(14) Vtn=�tLtn+�t(1−�)A(t,n)Stn+�tn; t=1,…, 44; n=1,…,N(t),

18This estimate of depreciation is regarded as a net depreciation rate because it is equal to a true 
gross structure depreciation rate less an average renovations appreciation rate. As we do not have infor-
mation on renovations and additions to a structure, our age variable will only pick up average gross 
depreciation less average real renovation expenditures. Note that we excluded sales of houses from our 
sample if  the age of the structure exceeded 50 years when sold. Very old houses tend to have larger than 
normal renovation expenditures, and thus their inclusion can bias the estimates of the net depreciation 
rate for younger structures.

19Thorsnes (1997, p. 101) assumed that a related supply side model held instead of equation (14). 
He assumed that housing was produced by a CES production function H(L,K ) ≡ [�L� + �K �]1∕� where 
K is structure quantity and 𝜌 ≠ 0;𝛼 > 0;𝛽 > 0 and � + � = 1. He assumed that property value Vt

n
 is equal 

to ptH(Lt
n
,Kt

n
), where pt, �, �, and � are parameters to be estimated. However, our builder’s model as-

sumes that the production functions that produce structure space and that produce land are indepen-
dent of each other.

20See Schwann (1998), Diewert (2010), and Diewert et al. (2011, 2015) on the multicollinearity 
problem.

(15) Vtn=�tLtn+PSt(1−�)A(t,n)Stn+�tn; t=1,…, 44; n=1,…,N(t).
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Thus we have 14,073 degrees of freedom to estimate 44 land price parameters �t and 
one annual geometric depreciation rate parameter �, a total of 45 parameters. We 
estimated the nonlinear regression model defined by (15) for our Tokyo data set 
using the econometric programming package Shazam; see White (2004). The R2 for 
the resulting preliminary nonlinear regression Model 0 was only 0.5545 ,21 which is 
not very satisfactory. However, there are no location variables in Model 0.

The value of a structure of the same type and age should not vary much from 
location to location. However, the price of land will definitely depend on the loca-
tion of the property. Thus for our next model, we assume that the per meter price 
of land of a property is a function f(x, y) of its spatial coordinates, x and y. Thus 
let xtn and ytn equal the normalized longitude and latitude of property n sold in 
period t. We will initially approximate the true land price surface f(x, y) by the 
4 × 4 Colwell spatial grid function g4(x, y) defined in Section 3. If  Xtn and Ytn are 
the raw longitude and latitude of property n sold in period t, then define the cor-
responding transformed spatial coordinates as xtn ≡ 4(Xtn −Xmin)∕(Xmax −Xmin) 
and ytn ≡ 4(Ytn −Ymin)∕(Ymax −Ymin) and define the Colwell approximation to 
f (xtn, ytn) as g4(xtn, ytn) using the definitions in Section 3. Model 1 is the following 
nonlinear regression model:

Note that the � vector of parameters in g4(xtn, ytn, �) consists of the 25 spatial grid 
parameters � ij, where i, j = 0, 1, 2, 3, 4. Thus equations (16) contain 44 unknown 
period t land price parameters �t, 25 unknown � ij spatial grid parameters, and 1 
depreciation rate parameter � for a total of 70 unknown parameters. However, not all 
of these parameters can be estimated. If we multiply all components of � by the pos-
itive number � and divide all �t by �, it can be verified that the terms �tg4(xtn, ytn, �)Ltn 
remain unchanged. Thus a normalization on the �t and the � ij is required. We impose 
the normalization �1 = 1 which means that the sequence, 1, �2,…, �44, can be inter-
preted as an index of residential land prices for Tokyo for the 44 quarters in our 
sample, where the index is set equal to 1 in the first quarter of 2000.22

There are 4 × 4 = 16 cells Cij in our grid of squares where C11 is the cell in the 
southwest corner of the grid, C41 is the southeast corner cell, C14 is the northwest 
corner cell, and C44 is the northeast corner cell. It turns out that cell C41 has no 
observed property sales over the entire sample period.23 This means that �44, the 
value of land per meter squared at the southeast corner of the grid, cannot be 

21All of the R2 reported in this paper are equal to the square of the correlation coefficient between 
the dependent variable in the regression and the corresponding predicted variable. The estimated net 
annual geometric depreciation rate was � = 10.49 percent, with a T statistic of 23.3. This depreciation 
rate is too high to be believable. As we add more explanatory variables, we will obtain more reasonable 
depreciation rates.

(16) Vtn=�tg4(xtn, ytn, �)Ltn+PSt(1−�)A(t,n)Stn+�tn; t=1,…, 44; n=1,…,N(t).

22Note that the �t shift the entire land price surface g4(x, y, �) in a proportional manner over time. 
Thus all reasonable index numbers of the land price components of individual residential properties in 
Tokyo will be proportional to the estimated parameter sequence 1, � ∗

2
,…, � ∗

44
. This is perhaps a weak-

ness of our model but given the nonparametric nature of our modeling of land prices, some simplifying 
assumptions had to be made to estimate all of the parameters in our model. In a real time setting, a 
rolling window approach would be used to implement our model, which would allow the height param-
eters to change over time; see Shimizu et al. (2010) for an example of this approach.

23This cell is defined as properties with normalized spatial coordinates (x, y) where x and y satisfy 
the restrictions 3 ≤ x ≤ 4 and 0 ≤ y ≤ 1.
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identified. Thus in addition to the normalization � = 1, we set �44 = 0 in equations 
(16). These normalizations will ensure that the nonlinear minimization problem 
associated with estimating Model 1 will have a unique solution. Thus Model 1 has 
68 unknown parameters.

We used Shazam’s nonlinear regression option to estimate the unknown 
parameters in (16). The R2 for Model 1 turned out to be 0.7973, a huge jump from 
the R2 for Model 0, which was only 0.5545. This large jump indicates the impor-
tance of including locational variables in a property regression. The log likelihood 
for Model 1 increased by 5524.50 points over the final log likelihood of Model 0 for 
adding 23 new location parameters. As Model 0 is a special case of Model 1, this 
is a highly significant increase in log likelihood. The estimated geometric deprecia-
tion rate from Model 1 was 6.33 percent per year (T statistic = 31.7), which is more 
reasonable than the Model 0 estimate of 10.49 percent.

We now address the problem of how exactly should the land, structure, and 
overall house price index be constructed? Our nonlinear regression model defined 
by (16) decomposes the period t value of property n into two terms: one which 
involves the land area Ltn of  the property, �tg4(xtn, ytn, �)Ltn, and another term, 
PSt(1 − �)A(t,n)Stn, which involves the structure area Stn of  the property. The first 
term can be regarded as an estimate of the land value of house n that was sold in 
quarter t, while the second term is an estimate of the structure value of the house 
(if  Stn > 0). Our problem now is how exactly should these two value terms be 
decomposed into constant quality price and quantity components? Our view is that 
a suitable constant quality land price index for all houses sold in period t should be 
�t and for property n sold in period t, the corresponding constant quality quantity 
should be g4(xtn, ytn, �)Ltn.

24 Turning to the decomposition of the structure value 
of property n sold in period t, PSt(1 − �)A(t,n)Stn, into price and quantity compo-
nents, we take PSt as the price and (1 − �)A(t,n)Stn as the corresponding quantity for 
property n sold in quarter t.

Note that the above model decompositions of individual property values into 
land and structure components sets the quality adjusted price of a square meter of 
land in quarter t equal to � ∗

t
, the estimated parameter value for �t and sets the price 

of a square meter of structure equal to PSt, the official per meter structure cost 
for quarter t. These constant quality prices apply to all properties sold in period t 
and thus we can set the aggregate land and structure price for all residential prop-
erties sold in period t equal to PLt and PSt where PLt ≡ � ∗

t
 for t = 1,…, 44. The 

corresponding aggregate constant quality quantities of land and structures sold in 
period t are defined as follows:

24An alternative way of viewing our land model is that land in each location indexed by the spatial 
coordinates xn, yn can be regarded as a distinct commodity with its own price and quantity. However, as 
our model forces all land prices in the same location to move proportionally over time, virtually all 
index number formulae will generate an overall land price series that is proportional to the �t.

(17) QLt≡
∑N(t)

n=1
g4(xtn, ytn, �

∗)Ltn; QSt≡
∑N(t)

n=1
(1−�∗)A(t,n)Stn; t=1,…, 44,
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where � ∗ ≡ [� ∗
00
,…, � ∗

44
] and � ∗ are the estimated parameter values obtained by 

running the nonlinear regression model defined by (16).25

The price and quantity series for land and structures need to be aggregated 
into an overall Tokyo residential property sales price index. We use the Fisher 
(1922) ideal index to perform this aggregation. Thus define the overall house price 
level for quarter t for Model 1, Pt, as the chained Fisher price index of the land and 
structure series {PLt,PSt,QLt,QSt}. As these aggregate price and quantity series are 
generated by the Model 1 nonlinear regression model defined by equations (16), we 
relabel QLt,QSt,Pt,PLt,PSt, as QL1t,QS1t,P1t,PL1t,PS1t for t = 1,…,T .26

The overall Model 1 house price index P1t as well as the land and structure 
price indexes PL1t and the normalized structure price index, pSt ≡ PSt∕PS1, for 
Tokyo over the 44 quarters in the years 2000–2010 are graphed in Chart 1.27 We 

25We could use hedonic imputation or index number theory to form aggregate price and quantity 
indexes of land and structures but because our model makes the constant quality price of land and 
structures the same across all property sales in a quarter, our aggregation procedure can be viewed as an 
application of Hicks’ Aggregation Theorem; that is, if  the prices in a group of commodities vary in 
strict proportion over time, then the factor of proportionality can be taken as the price of the group, 
and the deflated group expenditures will obey the usual properties of a microeconomic commodity. 
Thus we have shown mathematically the very important principle, used extensively in the text, that if  the 
prices of a group of goods change in the same proportion, that group of goods behaves just as if  it were 
a single commodity. Hicks (1946, pp. 312–313).

26The Fisher chained index P1t is defined as follows. For t = 1, define P1t ≡ 1. For t > 1, define P1t in 
terms of P1t−1 and PFt as P1t ≡ P1t−1PFt, where PFt is the quarter t Fisher chain link index. The chain 
link index for t ≥ 2 is defined as PFt ≡ [PLAStPPAAt]

1∕2, where the Laspeyres and Paasche chain link in-
dexes are defined as PLASt ≡ [PL1tQL1t−1 + PS1tQS1t−1]∕[PL1t−1QL1t−1 + PS1t−1QS1t−1] and 
PPAAt ≡ [PL1tQL1t + PS1tQS1t]∕[PL1t−1QL1t + PS1t−1QS1t]. Diewert (1976, 1992) showed that the Fisher 
formula had good justifications from both the perspectives of the economic and axiomatic approaches 
to index number theory.

27Define the normalized official structure price series as pSt = PSt∕PS1 for t = 1,…, 44. This is the 
series that is plotted in Chart 1. It will not change as we introduce additional hedonic property regres-
sion models. We note that the official index PSt = 18.5pSt; that is, PS1 = 18.5.

Chart 1: Mean Property Price Index and Model 1
Overall and Land Price Indexes and the Official

Structure Price Index
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[Correction added on 1st September 2022, after first online publication: Charts 1-4 have been included 
in this version.]
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have also computed the quarterly mean selling price of properties traded in quarter 
t and then normalized this average property price series to start at 1 in Quarter 1 of 
2000. This mean price series, PMean t, is also graphed in Chart 1.28

It can be seen that the official structure price series gradually trends down-
ward over the sample period, which is not surprising as general deflation occurred 
in Japan during our sample period. Because there are so many land-only properties 
in our sample and because the value of structures is relatively small for properties 
that have structures on them, it can be seen that our estimated land price series, 
PL1t, is relatively close to our Model 1 overall property price index, P1t. It can also 
be seen that the average property price series, PMean t, has the same general shape 
as our overall property price index P1t, but the average property price series lies well 
below our constant quality property price series by the end of the sample period. 
This is to be expected as the mean property price series does not consider depre-
ciation of the structures for properties that have structures on them. However, the 
extent of the downward bias in the mean property price series by the end of the 
sample period is somewhat surprising.

Can we vary the number of cells in the spatial grid and explain more of the 
variation in residential property prices? We address this question in the next four 
hedonic regression models (Models 2–5) where we progressively increase the num-
ber of cells in the locational grid. Thus we will replace the land price approximat-
ing function g4(xtn, ytn, �) in (16) by g5(xtn, ytn, �), g6(xtn, ytn, �), g7(xtn, ytn, �) and 
g8(xtn, ytn, �). The resulting Models 2–5 have 25, 36, 49, and 64 cells Cij and 36, 49, 
64, and 81 spatial land price height parameters � ij, respectively. Setting up the cor-
responding nonlinear regressions using (16) as a template is straightforward except 
that the existence of cells with no sample observations means that not all height 
parameters can be estimated.

For Model 2, which used g5(xtn, ytn, �) in (16) in place of g4(xtn, ytn, �), the 
following cells in the 5 × 5 grid of cells had no sales over our sample period: 
C11,C41,C51, and C42. This means that three height parameters could not be esti-
mated, and so we imposed the following restrictions on the parameters of Model 
2: �00 = �40 = �50 = 0. We also set �1 = 1 so that the remaining land price parame-
ters �t could be identified. Thus Model 2 had 36 − 3 = 33� ij parameters, 43 land 
price parameters �t, and 1 depreciation rate parameter � for a total of 77 parame-
ters. The final log likelihood for Model 2 was 155.04 points higher than the final 
log likelihood for Model 1 for adding nine extra land price location parameters. 
The resulting R2 was 0.8035 and the estimated geometric depreciation rate was 
� ∗ = 6.29 percent with a T statistic of 31.6. We expected that all of the estimated 
height parameters would be positive but two of them (� ∗

51
 and � ∗

05
) turned out to be 

negative. However, the estimated land prices for each observation tn in our sample, 
g5(xtn, ytn, �

∗ ), turned out to be positive for t = 1,…, 44 and n = 1,…,N(t), and so 
we did not worry about these three negative � ∗

ij
 at this stage of our investigation.29 

28The series PMean,P1,PL1, and pS are also listed in Table A1 of Appendix A.
29The city of Tokyo is adjacent to the Pacific Ocean and so the boundaries of the city do not fit 

nicely into a rectangular grid (which we transformed into a square grid). Thus as the number of squares 
in the grid becomes larger, some squares at the boundaries of the grid will end up having no observa-
tions or very few observations. Thus suppose the observations in cell C11 are concentrated in the top 
north east corner of this cell. Then a better fit to the observed data in cell C11 may be obtained by setting 
�00 equal to a negative number.
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The sequence of estimated � ∗
t
 is our estimated land price series for Model 2, PL2t, 

and this series is plotted in Chart 2 and is listed in Table A2 of Appendix A.
For Model 3, which used g6(xtn, ytn, �) in (16) in place of g4(xtn, ytn, �), the 

following five cells in the 6 × 6 grid of cells had no sales over our sample period: 
C11,C51,C61,C52, and C62. Thus we set the following five height parameters equal 
to 0 to identify the remaining height parameters: �00 = �50 = �60 = �51 = �61 = 0. 
We also set �1 = 1 so that the remaining land price parameters �t could be identi-
fied. Thus Model 3 had 49 − 5 = 44� ij parameters, 43 land price parameters �t, and 
1 depreciation rate parameter � for a total of 88 parameters. The final log likeli-
hood for Model 3 was 82.43 points lower than the final log likelihood for Model 
2 for adding 11 extra land price location parameters. Model 3 is not a special case 
of Model 2 so it can happen that moving to a larger number of squares in the grid 
does not improve the fit of the model. The problem is that there are likely to be 
discrete neighborhood land price effects and our relatively course partition of the 
city into squares does not adequately capture these discrete neighborhood effects. 
The resulting R2 for Model 3 was 0.8014 (less than the Model 2 R2 of  0.8035) and 
the estimated geometric depreciation rate was � ∗ = 6.25 percent with a T statistic 
of 31.8. There were five negative estimates for the land price height parameters: 
� ∗
01
, � ∗

10
, � ∗

41
, � ∗

06
, and � ∗

56
. However, the estimated land prices g6(xtn, ytn, �

∗ ) turned 
out to be positive for each observation in our sample. The sequence of estimated 
� ∗
t
 is our estimated land price series for Model 3, PL3t, and this series is plotted in 

Chart 2 and is listed in Table A2 of Appendix A.
Model 4 used g7(xtn, ytn, �) in (16) in place of g4(xtn, ytn, �). The follow-

ing nine cells in the 7 × 7 grid of cells had no sales over our sample period: 
C11,C21,C51,C61,C71,C52,C62,C72, and C17. Thus we set the following nine 
height parameters equal to 0 to identify the remaining height parameters: 
�00 = �10 = �50 = �60 = �70 = �51 = �61 = �71 = �07 = 0. We also set �1 = 1 so that 

Chart 2: Land Prices for Models 1-6
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the remaining land price parameters �t could be identified. Thus Model 4 had 
64 − 9 = 55� ij parameters, 43 land price parameters �t, and 1 depreciation rate 
parameter � for a total of 99 parameters. The final log likelihood for Model 4 
was 501.88 points higher than the final log likelihood for Model 3 for adding 11 
extra land price location parameters. The resulting R2 for Model 4 was 0.8156 and 
the estimated geometric depreciation rate was � ∗ = 5.99 percent with a T statistic 
of 31.9. There were three negative estimates for the land price height parameters: 
� ∗
01
, � ∗

67
 and � ∗

77
. As usual, the estimated land prices, g7(xtn, ytn, �

∗ ) for t = 1,…,T  
and n = 1,…,N(t), turned out to be positive for each observation in our sample. 
The sequence of estimated � ∗

t
 is our estimated land price series for Model 4, PL4t, 

and this series is plotted in Chart 2 and is listed in Table A2 of Appendix A.
Finally, Model 5 used g8(xtn, ytn, �) in (16) in place of g4(xtn, ytn, �). The 

following 14 cells in the 8 × 8 grid of cells had no sales over our sample period: 
C11,C12,C21,C18,C61,C62,C63,C71,C72,C73,C81,C82,C83, and C88. All four corner 
cells were empty along with many other boundary cells. Thus we set the follow-
ing 14 height parameters equal to 0 to identify the remaining height parameters: 
�00 = �10 = �01 = �60 = �61 = �62 = �70 = �71 = �72 = �80 = �81 = �82 = �88 = 0. We 
also set �1 = 1 so that the remaining land price parameters �t could be identified. 
Thus Model 5 had 91 − 14 = 77� ij parameters, 43 land price parameters �t, and 1 
depreciation rate parameter � for a total of 111 parameters. The final log likelihood 
for Model 5 was 249.72 points lower than the final log likelihood for Model 4 for 
adding 12 extra land price location parameters. The resulting R2 for Model 5 was 
0.8086 (compared to 0.8156 for Model 4) and the estimated geometric depreciation 
rate was � ∗ = 6.18 percent with a T statistic of 31.5. There were five negative esti-
mates for the land price height parameters: � ∗

02
, � ∗

11
, � ∗

50
, � ∗

51
 and � ∗

52
. As usual, the 

estimated land prices, the g8(xtn, ytn, �
∗ ), turned out to be positive for each obser-

vation in our sample. The sequence of estimated � ∗
t
 is our estimated land price 

series of index numbers for Model 5, PL5t, and this series is plotted in Chart 2 and 
is listed in Table A2 of Appendix A.

At this point, we decided to stop the process of increasing the number of 
height parameters. It is clear that our best model up to this point was Model 4 
(because the R2 for Model 5 fell below the R2 for Model 4). Thus increasing k does 
not necessarily improve the fit of the model.

One of the main purposes of this paper is to see if  the use of spatial coordi-
nates in a residential hedonic property value regression can lead to more accurate 
estimates for a property price index and for a land price subindex for residential 
properties than can be obtained using just postal codes or other neighborhood 
locational variables. Hill and Scholz (2018) made this comparison for residential 
property price indexes but not for the land price component of their overall prop-
erty price index as their methodological approach did not allow for separate land 
and structure subindexes.

An alternative to using spatial coordinates to measure the influence of 
location on property prices is to use postal codes or neighborhoods as indicators 
of location. There are 23 Wards in Tokyo and each property in our sample belongs 
to one of these Wards. To consider the possible neighborhood effects on the 
price  of land, we introduced ward dummy variables, DW ,tn,j, into the hedonic 
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regression (15). These 23 dummy variables are defined as follows: for 
t = 1,…, 44;n = 1,…,N(t);j = 1,…, 23:30

We now modify the model defined by (15) to allow the level of  land prices to differ 
across the 23 Wards of Tokyo. The new Model 6 is defined by the following non-
linear regression model:

Comparing the models defined by equations (15) and (19), it can be seen that we 
have added an additional 23 ward relative land value parameters, �1,…,�23, to the 
model defined by (15). However, looking at (19), it can be seen that the 44 land 
price time parameters (the �t) and the 23 ward parameters (the �j) cannot all be 
identified. Thus we need to impose at least one identifying normalization on these 
parameters. We chose the following normalization �1 = 1. Thus equations (19) con-
tain 43 unknown period t land price parameters �t, 23 Ward relative land price 
parameters, the �j, which replace the 25 unknown � ij spatial grid parameters in 
(16), and 1 depreciation rate parameter � for a total of 67 unknown parameters. 
Thus this Ward dummy variable hedonic regression (Model 6) has roughly the same 
number of parameters as our spatial coordinate Model 1, which had 68 unknown 
parameters.

The final log likelihood for Model 6 was − 24, 318.67, a gain of 5045.90 over 
the final log likelihood of Model 0 defined by equations (15). The R2 for Model 6 
was 0.7853. The final log likelihood for Model 1 was − 23, 840.07 and the R2 was 
0.7993. Thus the spatial coordinates Model 1 fit the data better than the dummy 
variable Model 6. Both models had roughly the same number of parameters. An 
important question for our purposes is: how different are the resulting land price 
indexes generated by these two models? As usual, the sequence of estimated � ∗

t
 is 

our estimated land price series for Model 6, PL6t, and this series is plotted in Chart 
2 and is listed in Table A2 of Appendix A.31

It can be seen that all six models produce much the same land price indexes.32 
Because our best fitting model was Model 4, PL4t is our preferred land price series. 

30The number of observations in each Ward in our sample was as follows: 3, 5, 195, 429, 348, 28, 
62, 94, 453, 1260, 1114, 3434, 382, 701, 2121, 274, 107, 76, 432, 1679, 361, 212, 303. Thus Wards 1 and 
2 had very few observations.

(18) DW ,tn,j ≡

{

1 if observation n in period t is in Ward j of Tokyo;

0 if observation n in period t is not in Ward j of Tokyo.

(19)

Vtn=�t(
∑23

j=1
�jDW ,tn,j)Ltn+PSt(1−�)A(t,n)Stn+�tn; t=1,…, 44;n=1,…,N(t).

31Define the aggregate constant quality amounts of residential land and structures sold in period t 
by QLt ≡

∑ N(t)

n= 1
(
∑

23
j = 1

� ∗
j
DW ,tn,j )Ltn and QSt ≡

∑ N(t)

n= 1
(1 − � ∗ )A(t,n)Stn for t = 1,…, 44. The overall pe-

riod t property price index for Model 6, P6t, is defined as the chained Fisher price index using the above 
QLt and QSt as the period t quantity series and PL6t ≡ � ∗

t
 and the official structure prices PSt as the pe-

riod t price series when constructing the Fisher index chain links.
32Because the structure component of overall property prices is relatively small compared to the 

land component and because the structure price index is the same across all six models, the overall 
property price indexes generated by Models 1–6 are all very similar.
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Note that the Ward dummy variable model land price index, PL6t, is fairly close to 
our preferred series.

6. T he Builder’s Model Using Additional Information

The above six models make use of information on land plot size, structure 
floor space, the age of the structure (if  the property has a structure), and its loca-
tion, either in terms of spatial coordinates or in terms of its neighborhood.33 These 
are the most important residential property price determining characteristics in 
our view. In Appendix C, we made use of additional information on housing char-
acteristics and we checked to see if  this extra information materially changes our 
estimated land price indexes.34 We used the spatial coordinate Model 4 as our start-
ing point in these models, as it was the best fitting model studied in this section. 
This model used the Colwell nonparametric model for modeling the land price 
surface with the 7 × 7 = 49 cell grid.

A brief  summary of the estimated land price series that resulted from the use 
of additional information on property characteristics follows. Model 7 introduced 
dummy variables for the existence of a structure on the property. We found that 
Japanese purchasers of properties were willing to pay a premium of about 11 per-
cent for a lot that had no structure on it. Model 8 introduced piecewise linear 
splines on the lot size, while Model 9 added splines on the structure size. Model 10 
introduced two subway access and travel time to the city core variables. Model 11 
added the number of bedrooms to the list of explanatory variables as an additional 
quality determining characteristic for the structure on the property. Model 12 
introduced lot width as an additional characteristic which affected the land value 
component of property value. Model 12 ended up with an R2 of  0.8488, which 
means this spatial coordinates model, with all the extra bells and whistles imbed-
ded in it, explained the data fairly well. This model generated three negative land 
price parameters. All nonparametric methods of surface fitting can have problems 
fitting the boundaries of the region where data are available and our suggested 
method also suffers from this boundary fitting problem.35 The negative estimated 
parameters can be eliminated in our method by replacing them with squared 
parameters in our nonlinear regression. We did this replacement for Model 13, 
which is our final Colwell type regression. The R2 for this model was the same as 
for Model 12 but there was a loss of 1.2 log likelihood points. The land price series 
that were generated by Models 12 and 13 were virtually identical; see Table A3 in 
Appendix A. The estimated annual geometric depreciation rate for Model 13 was 
� ∗ = 0.0417. Model 14 is the same as Models 12 and 13 except that Ward dummy 
variable terms replaced the Colwell locational grid function, g7(xtn, ytn, �), for each 
observation tn.

33We also require an exogenous building cost per square meter to get realistic land and structure 
subindexes.

34We were also interested in determining whether the extra information will change our estimates 
of structure depreciation rates.

35At the boundaries of the data region, nonparametric methods will tend to fit the error terms.
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The final log likelihood for Model 14 was 478.6 log likelihood points higher 
than the final log likelihood of Model 6, which also used Ward dummy variables 
but did not use the extra characteristic information. However, the log likelihood 
of Model 14 was 827.0 points below the final log likelihood of Model 13, our 
best Colwell spatial coordinate model. The R2 for Model 14 was 0.8300 which was 
below the R2 for Model 13, which was 0.8488. The estimated parameters for Model 
14 are listed in Table A6 in Appendix A. The sequence of land price indexes is the 
series of estimated coefficients, the � ∗

t
. This series is labeled as PL14t and is listed in 

Table A3 of Appendix A.
Models 7–14 are explained in more detail in Appendix C. The land price 

indexes that these models generated are plotted in Chart 3.

Our conclusion at this point is that the neighborhood dummy variable models do 
not fit the data quite as well as a spatial coordinate model but the two types of model 
generate much the same land prices and hence overall residential property price 
indexes.36 Looking at Chart 3, it can be seen that Model 14, the model that used Ward 
dummy variables to consider location effects on the price of land, produced the lowest 
measure of residential land price inflation in Tokyo. Our best spatial coordinate models, 
Models 12 and 13,37 had the next lowest measure of land price inflation. The land price 
indexes generated by Models 7–11 are marginally above the Model 13 and 14 indexes.

In the following section, we compute the overall residential property price 
indexes that are generated by Models 1–14, and we compare the resulting indexes 
with a traditional log price time dummy property price index.

36Hill and Scholz (2018) came to the same conclusion for Sydney overall residential property price 
indexes.

37We did not plot the land price index for Model 13 as it could not be distinguished from the Model 
12 index.

Chart 3: Land Price Indexes for Models 7-12 and 14
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7. O verall Residential Property Price Indexes

Models 1–14 in the previous two sections all have the same general structure in 
that property value is decomposed into the sum of land value plus structure value 
plus an error term. For example, using Model 6, the predicted value of property n in 
quarter t, Vtn, is equal to the predicted land value, �t(

∑

23
j =1

�∗
j
DW ,tn,j)Ltn ≡ VLtn, 

plus predicted structure value, PSt(1 − � ∗ )A(t,n)Stn ≡ VStn. Thus quarter t total pre-
dicted land value is VLt ≡

∑ N(t)

n=1
VLtn and quarter t total predicted structure value is 

VSt ≡
∑ N(t)

n=1
VStn. The period t price of land for Models 1–14, PLt, is always � ∗

t
 and 

the corresponding period t price of a structure is always pSt ≡ PSt∕PS1 for 
t = 1,…, 44 where PSt is the official structure cost per m2 of structure. For all mod-
els, define the corresponding period t aggregate quantity of land and structure as 
QLt ≡ VLt∕PLt and QSt ≡ VSt∕pSt for t = 1,…, 44. Thus the basic price and quantity 
data for each model are (PLt, pSt,QLt,QSt) for t = 1,…, 44. The overall property 
price indexes for Models 1–14 are calculated as Fisher (1922) chained indexes using 
the price and quantity data for land and structures that has just been defined. Label 
the resulting overall property price indexes for quarter t for Models 7–14 as 
P7t,P8t,P9t,P10t,P11t,P12t,P13t, and P14t. These series are listed in Table A7 in 
Appendix A. As was the case with the corresponding land price indexes, there these 
overall property price indexes approximate each other fairly closely.

There is one additional overall property price index that we calculate in this 
section, which is an index that is based on a “traditional” hedonic property price 
regression that uses the logarithm of price as the dependent variable and has time 
dummy variables.38 Define the kth time dummy variable DT ,tn,k for property n sold 
in period t as follows: for t = 1,…, 44; n = 1,…,N(t); k = 2, 3,…, 44:

Our best time dummy variable hedonic regression model39 is the following  
Model 15:

where lnVtn and lnLtn denote the natural logarithms of property value Vtn and prop-
erty lot size Ltn respectively, the DT ,tn,k are time dummy variables, the DW ,tn,j are 
Ward dummy variables, Stn is the floor space area of the property (if  there was no 
structure on the property n in period t, Stn ≡ 0), TWtn, and TTtn are the subway 
time variables, Wtn is the lot width variable, Atn is the age of the structure on prop-
erty n sold in period t (Atn ≡ 0 if  the property had no structure), and the DNB,tn,i are 

38This type of model does not generate reasonable separate land and structure subindexes; see 
Diewert et al. (2017, pp. 24–25) for an explanation of this assertion.

(20) DT ,tn,k ≡1 if t=k; DT ,tn,k ≡0 if t≠k.

39We ran an initial linear regression using Ltn as an independent variable in place of lnLtn. However, 
this regression had a log likelihood that was 204.99 points lower than our final linear regression defined 
by (21). The R2 for this preliminary regression was 0.8274. Note that we could not use lnStn as an inde-
pendent variable because many observations had no structure on them and hence Stn is equal to 0 for 
these properties, and thus we could not take the logarithm of 0.

(21)

lnVtn =

∑44

k=2
�kDT ,tn,k+

∑23

j=1
�jDW ,tn,j+�lnLtn+�Stn+�Atn+�TWtn+�TTtn

+�Wtn+

∑6

i=3
� iDNB,tn,i+�tn; t=1,…, 44; n=1,…,N(t),
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the bedroom dummy variables. The log likelihood of this model cannot be com-
pared to the log likelihood of the previous models because the dependent variable 
is now the logarithm of the property price instead of the property price. There are 
75 unknown parameters in the model defined by equations (21). The R2 for Model 
15 was 0.8323. Set � ∗

1
= 0 and denote the estimated �2 to �44 by � ∗

2
, � ∗

3
,…, � ∗

44
. The 

sequence of overall property price indexes P15t generated by this model are the 
exponentials of the � ∗

t
; that is, define P15t ≡ exp[� ∗

t
] for t = 1,…, 44. This series is 

listed in Table A7 of Appendix A.
Chart 4 compares several of the overall residential property prices that are 

defined above: the mean property price index PMean t that appeared in Chart 1, P9t 
(this is based on Model 9 which did not use information on the subway variables, 
the number of bedrooms, and the lot width variable), Model 13 (P13t: our best 
Colwell spatial coordinates model), Model 14 (P14t: our best Ward dummy variable 
model), and Model 15 (P15t: our best traditional log price time dummy hedonic 
regression model that used all of our property price characteristics except the spa-
tial coordinates).

Several points emerge from a study of Chart 4:

•	 The mean index, PMean t, has a large downward bias as compared to the 
other four indexes which is due to its neglect of structure depreciation. 
However, the movements in this index are similar to the movements in the 
other indexes.

•	 The property price index P15t generated by a traditional log price time 
dummy hedonic regression model has a downward bias but it is not large.40

40Diewert (2010) also observed a similar result.

Chart 4: Selected Overall Property Price Indexes
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•	 The Model 9 property price index, a Colwell spatial coordinates model that 
used only the four fundamental characteristics of a residential property 
(land plot area, structure floor space area, the age of the structure, and 
some locational variable)41 generated an overall property price index P9t 
that is quite close to our best Colwell spatial model, Model 14, which gen-
erated the overall property price index P14t. Thus it is probably not neces-
sary for national statistical agencies to collect a great deal of information 
on housing characteristics to produce a decent overall property price index 
(as well as decent land and structure subindexes).

•	 The Model 14 property price index, P14t, that used local neighborhood 
information about properties instead of spatial coordinate information 
turned out to be fairly close to our best Colwell spatial index, P13t. Thus 
following the advice of Hill and Scholz (2018), it is probably not necessary 
to use the spatial coordinate information to construct a satisfactory overall 
residential property price index.

8.  Conclusion

Here are the main points that emerge from our paper:
•	 Satisfactory residential land price indexes and overall residential property 

price indexes can be constructed using local neighborhood dummy vari-
ables as explanatory variables in residential property regression models. 
It is not necessary to use spatial coordinates to model location effects on 
property prices.

•	 However, the use of spatial coordinates to model location effects does lead 
to better fitting regression models.

•	 The most important housing characteristics information that is needed to 
construct satisfactory residential land and overall property price indexes is 
information on lot size, floor space area of the property structure (if  there 
is a structure on the property), the age of the structure, and some infor-
mation on the location of the property. To obtain a satisfactory land price 
index, our method requires the use of exogenous information on residential 
construction costs.

•	 However, additional information on the characteristics of the property will 
improve the fit of our hedonic regressions, but the effects of the additional 
information on the resulting land and structure price indexes were minimal 
for our application to Tokyo residential property price indexes.

•	 Having land-only sales of residential properties should help improve the 
accuracy of the land price index that is generated by a property regression 
model. However, for our Japanese data, we found that the value of the 
land component of a land-only property earned a 10–15 percent premium 
over the land value of a neighboring property of the same size but with a 

41In addition to these four fundamental variables, we need an exogenous building cost measure to 
implement our basic models.
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structure on the property. We attribute this premium to the costs of demol-
ishing an older structure.

•	 Our models that used spatial coordinates to account for locational effects 
on the value of land used Colwell’s nonparametric method for fitting a 
surface. This nonparametric method is much easier to implement than the 
penalized least squares approach used by Hill and Scholz (2018) to model 
locational effects on property prices. In Appendix B of the paper, we point 
out some of the theoretical advantages of Colwell’s method.

•	 The potential bias in using property price indexes that are based on taking 
mean or median averages of property prices in a period can be very large. 
Typically, these methods will have a downward bias due to their neglect of 
structure depreciation.

•	 A traditional log price time dummy hedonic regression model that has 
structure age as an explanatory variable will typically reduce the bias that 
is inherent in an index based on taking averages of property prices. For our 
Tokyo data, we found that the traditional hedonic regression model led to 
an index which had a small downward bias (see Chart 4).

It should be noted that if  a national statistical agency were to apply the re-
gression models that were explained in this paper, they would not just run a 
regression using the entire sample data. A rolling window approach would 
be used: a window length of say 12–16 quarters would be chosen and as 
the data for each new quarter was processed, the movements in the index 
over the last two quarters in the sample would be used to update the last 
published index value; see Shimizu et al. (2010) for an application of this 
rolling window approach.

Our emphasis in this paper (and in other papers42) has been to develop reliable 
methods for the construction of the land component of residential property price 
indexes. This task is important for national statistical agencies because the balance 
sheet accounts in the System of National Accounts requires estimates for the price 
and volume of land used in production and consumption. In particular, this infor-
mation is required to obtain more accurate estimates of national (and sectoral) 
Total Factor Productivity growth43 but for the vast majority of countries, this 
information is simply not available. We hope that the methods explained in the 
present paper will be of use to national statistical agencies in developing improved 
estimates for the price and volume of land used in production and consumption. 
An additional benefit of our suggested method for obtaining land price indexes is 
that it also generates evidence-based estimates of structure depreciation rates.

Our suggested method for fitting a surface defined over a grid of squares can 
be extended in several ways:

•	 The grid of squares can be replaced by a grid of rectangles44;

42See Diewert and Shimizu (2015a, 2015b, 2017a, 2017b, 2019) and Diewert et al. (2016).
43See Jorgenson and Griliches (1967, 1972) who developed the methodology used by national and 

international statistical agencies to measure TFP growth or Multifactor Productivity growth.
44This was already suggested by Poirier(1976).
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•	 If  data are sparse in a particular square, then a block of four adjacent 
squares can be combined into a larger single square such that the larger 
square has a sufficient number of observations to enable estimation; and

•	 The basic method can be extended to functions defined over three or more 
variables.

On the last point listed above, we note that the key to Colwell’s method is defin-
ing a function that interpolates the data in a continuous manner over a unit 
square and is linear on the edges of the square. Recall that the Colwell inter-
polation function g(x, y) defined over the unit square was defined as follows:

For interpolation over a unit cube, the interpolation function is defined as 
follows:

Thus we take (1 − z) times the x and y square for z = 0 plus z times the x and 
y square for z = 1 to obtain an overall weighted average of the heights at 
the vertices of the cube. There will be eight � ijk height parameters to be 
estimated because there are eight vertices for a unit cube. The eight weights 
sum to 1; therefore, for all x, y, z belonging to the unit cube, we have:

Thus the interpolation method is likely to smooth the actual f(x, y, z) to some 
extent. There will be 16 = 24 parameters for the hypercube in four dimen-
sions and so on. The algebra linking the cubes into a linear regression will 
take some patience but it can be done.
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