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PRODUCTIVITY DISPERSION AND MEASUREMENT ERROR

by Thomas von Brasch, Diana-Cristina Iancu and Terje Skjerpen*

Statistics Norway

Several reasons have been put forward to explain the high dispersion of productivity across estab-
lishments: quality of management, different input usage and market distortions, to name but a few. 
Although it is acknowledged that a sizable portion of productivity dispersion may also be due to meas-
urement error, little research has been devoted to identifying how much they contribute. We outline a 
novel procedure for identifying the role of measurement error in explaining the empirical dispersion of 
productivity across establishments. The starting point of our framework is the errors-in-variable model 
consisting of a measurement equation and a structural equation for latent productivity. We estimate the 
variance of the measurement error and subsequently estimate the variance of the latent productivity 
variable, which is not contaminated by measurement error. Using Norwegian data on the manufacture 
of food products, we find that about one percent of the measured dispersion stems from measurement 
error.

JEL Codes: C23, J24, L11
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1. I ntroduction

It is widely accepted that the dispersion of productivity across establishments 
and industries is high. Dispersion is commonly measured by means of the standard 
deviation across establishments, where the productivity of each establishment is 
measured relative to a reference point, such as the mean productivity level at a 
given point in time. Using this procedure, it is typically found that the standard 
deviation across establishments is large and lies in the range of 30 to 100 percent; 
see Bartelsman and Wolf (2018).

Several reasons have been put forward to explain this high productivity dis-
persion: noisy selection (Jovanovic, 1982), sunk cost of entry (Hopenhayn, 1992), 
quality of management (Bloom and Van Reenen, 2010), different input usage, as 
the intensity of R&D or other intangible capital (Crepon et al., 1998), product sub-
stitutability (Syverson, 2004), product market rivalry (Bloom et al., 2013), market 
distortions (Hsieh and Klenow, 2009), skill-biased technical change and technolog-
ical adoption (Dunne et al., 2004) and innovation dynamics (Foster et al., 2018), to 
name but a few. Although it is acknowledged that the high productivity dispersion 
may also be due to measurement error, little research has been devoted to identify-
ing how much they contribute. 
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In this paper, we outline a novel procedure for identifying the role of measure-
ment error in explaining empirical productivity dispersion across establishments. 
We define productivity as the log of the ratio between gross nominal output and 
the number of employee man-hours. One reason for the presence of measurement 
error in productivity is that our labor input variable relates to input according 
to the labor contract, which may deviate from the actual man-hours executed. 
Another source of measurement error is misclassification, which occurs when the 
main part of the establishment’s production belongs to an industry other than the 
one considered, see e.g. Bartelsman et al. (2009, p. 28).

The starting point is the typical errors-in-variable framework consisting of a 
measurement equation and a structural equation for latent productivity. The key 
idea in our identification strategy is to estimate the variance of measurement error 
in a consistent way so that we can then estimate the variance of the companion latent 
variable, which is not contaminated by measurement error. To this end we build on 
the econometric theory of measurement error in dynamic models, see e.g. Komunjer 
and Ng (2014). Specifically, we remove time effects by means of a transformation 
in which we from each observation subtract time specific means of observation 
units that are present in all years. Unobserved establishment-specific heterogeneity 
is removed by differencing over time. The resulting model is a first-order autore-
gressive process in demeaned productivity growth rate. Measurement error variance 
and the productivity shock variance related to the development in latent produc-
tivity may be estimated by utilizing the covariance structure of the composite error 
terms. We estimate the amount by which productivity dispersion is reduced when 
measurement error is accounted for. Our findings indicate that about one percent of 
measured productivity dispersion is attributable to measurement error.

The rest of this paper is organized as follows: Section 2 outlines the procedure 
and the model for establishment-specific productivity. Section 3 describes the data 
and presents the results. Section 4 provides a conclusion.

2. M odeling Framework

Correcting for measurement error when assessing productivity dispersion 
across establishments presents a conceptual challenge. It can be illustrated analyt-
ically that measurement error increases the empirically observed dispersion com-
pared with the dispersion in the latent productivity variable by considering the 
following econometric model

where yit (i.e. the log of the ratio between gross production and man-hours) denotes 
the observed productivity and y∗

it
 the latent productivity of establishment i in year 

t. The last symbol in Equation (1), uit, denotes a random measurement error, i.e. it 
is assumed that E(uit)=0∀i,t and that E(uituj�)=�ij�t��

2
uu
, where �ij and �t� denote 

Kronecker deltas such that �ij =1 if  i= j, �ij =0 if  i≠ j, �t� =1 if  t= � and �t� =0 if  
t≠ �. The symbol �2

uu
 denotes measurement error variance. Furthermore 

E(y∗
it
uj�)=0∀i,j,t,�. Thus, the two terms on the right-hand side of Equation (1) are 

(1) yit=y
∗
it
+uit,
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assumed to be uncorrelated. We assume that yit and y∗
it
 follow trend stationary 

processes. In the empirical part of the paper we conduct a test to provide support 
for the trend stationary hypothesis. Let the time-invariant variances of the observed 
productivity and latent productivity variables be denoted �2

yy
 and �2

y∗y∗
, respec-

tively.1 Under the imposed assumptions, it follows from taking the variance on 
both sides of Equation (1) that the presence of measurement error leads to wider 
productivity dispersion, i.e. �2

yy
 > �2

y∗y∗
.

To identify how much of the variance of observed productivity is due to mea-
surement error, we need a model for the latent level of establishment-specific pro-
ductivity. Our point of departure is the standard model of technology diffusion 
used in the literature. The key idea in this model is that there should be an under-
lying driving force causing equalization of productivity if  information can flow 
freely and know-how can be adopted easily. The further away an establishment is 
from the technology frontier, the higher the potential for technological catch-up 
and the higher the growth in productivity will be. Analytically, this may be repre-
sented by the following model for establishment-specific latent productivity:

where �i captures the establishment’s own rate of innovation through its underlying 
capabilities and �it is the stochastic shock to productivity growth. It is assumed that 
E(�it)=0∀i,t and that E(�it�j�)=�ij�t��

2
��
, where �2

��
 denotes the variance of the 

productivity shock. Furthermore, E(�ituj�)=0∀i,j,t,�. The term y∗
F ,t−1

−y∗
i,t−1

 mea-

sures the distance between the technology level of establishment i and the frontier 
F, and 0<𝜆<1 determines the speed of catch-up or technological adoption. The 
symbol Nt denotes the number of establishments present in year t. This model has 
been applied in numerous books (Banks, 1994; Benhabib and Spiegel, 2005; 
Acemoglu, 2009) and articles covering both technology adoption between coun-
tries (Griffith et al., 2004; Madsen et al., 2010) and technology adoption among 
establishments within countries (Cameron et al., 2005; Griffith et al., 2009). To 
proceed with the analysis of this model, we let the establishment’s own rate of 
innovation �i be an unobserved establishment-specific fixed effect, and we let latent 
productivity at the frontier follow a deterministic function represented by fixed 
time effects, which leads to the following specification for development in latent 
establishment-specific productivity:

where �=1−� and �i and �t are a fixed establishment and a fixed time effect, 
respectively. That β lies between zero and unity is implied by the model for technol-
ogy diffusion, since 0<𝜆<1.

1In the empirical application, we carry out sub-sample estimation by considering shorter time pe-
riods. Indirectly, this sheds some light on the assumption of time-invariant variances.

y∗
it
=y∗

i,t−1
+�i+�(y∗

F ,t−1
−y∗

i,t−1
)+�it, for i=1,… ,Nt,

(2) y∗
it
=�y∗

i,t−1
+�i+�t+�it, for i=1,… ,Nt,
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Inserting for y∗
it
 from Equation (1) into Equation (2) yields2

where �it=�it+uit−�ui,t−1. It follows from our assumptions that

To remove the time effects, we make use of a transformation given by the dif-
ference between the observation and the time-specific mean of the observations for 
establishments present in all years. Let B denote a set containing all units observed 
in all years and let NB denote the number of such units. Later we will refer to B as 
the reference group. All other observational units are in the set B.3 Let

and

It therefore follows that

where

2One could also consider the case of systematic measurement error, such that Eq. (1) is augmented 
with an intercept. In that case Eq. (3) will also contain an intercept. However, this parameter is not 
identifiable since fixed time effects for all years also are present in the equation.

(3) yit=�i+�t+�yi,t−1+�it,

�2
��
=Var(�it)=�2

��
+ (1+�2)�2

uu
.

3To avoid additional symbols, we also use B and B in sub- and superscripts to indicate that the 
measures relate to establishments in the sets B and B, respectively.

y
B

t
=

1

NB

∑
k∈B

ykt,

�
B
=

1

NB

∑
k∈B

�k,

�
B

t
=

1

NB

∑
k∈B

�kt

u
B

t
=

1

NB

∑
k∈B

ukt.

(4) yd
it
=�d

i
+�yd

i,t−1
+�d

it
+ud

it
−�ud

i,t−1
,

yd
it
=yit−y

B

t
,

�d
i
=�i−�

B
,

�d
it
=�it−�

B

t
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and

Equation (4) is in the form used by Komunjer and Ng (2014). By differencing 
over time, we may filter out the time-invariant term �d

i
. Such a transformation 

yields

The transformation underlying Equation (5) implies introducing heterosce-
dasticity, which can easily be corrected for and which vanishes asymptotically. For 
observational units outside the reference group, i.e. i∈B, we multiply Equation 
(5) by 

[
(NB+1)∕NB

]−0.5
 and for observational units within the reference group, i.e. 

i∈B, we multiply Equation (5) by 
[
(NB−1)∕NB

]−0.5
. After this rescaling, we obtain 

the following equation

where
Δyw

it
=
[
(NB+1)∕NB

]−0.5
Δyd

it
 for i∈B and Δyw

it
=
[
(NB−1)∕NB

]−0.5
Δyd

it
 for 

i∈B. The other symbols in Equation (6) are defined by analogous expressions. 
Note that Δyw

i,t−1
 is correlated with the composite error term, Δ�w

it
+Δuw

it
−�Δuw

i,t−1
. 

The same is true for Δyw
i,t−2

, since this lagged difference is correlated with �Δuw
i,t−1

. 

Hence, we employ the variable Δyw
i,t−3

, which is not correlated with the composite 

error term, as an identifying instrument. The IV estimate obtained for � is referred 
to as 𝛽IV .

Let the composite error term in Equation (6) be defined by:

It follows from our assumptions that the following holds true:

and

The transformation undertaken introduces some correlation between the 
observational units. There are three different cases. If  i,j∈B we obtain

ud
it
=uit−u

B

t
.

(5) Δyd
it
=�Δyd

i,t−1
+Δ�d

it
+Δud

it
−�Δud

i,t−1
.

(6) Δyw
it
=�Δyw

i,t−1
+Δ�w

it
+Δuw

it
−�Δuw

i,t−1
,

�it=Δ�w
it
+Δuw

it
−�Δuw

i,t−1
.

Var(�it)=�iitt
��

=2
(
�2
��
+ (1+�+�2)�2

uu

)
,

Cov(�it,�i,t−1)=�
iit,t−1

��
=−

(
�2
��
+ (1+�)2�2

uu

)
,

Cov(�it,�i,t−2)=�
iit,t−2

��
=��2

uu

Cov(�it,�i,t−s)=0∀s≥3.

�
ijttB

��
=Cov(�it,�jt)=

2

NB+1

(
�2
��
+ (1+�+�2)�2

uu

)
,
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and

Second, if  both observational units are within the reference group, i.e. i,j∈B, 
we have

and

Third, if  observational unit i∈B and observational unit j∈B
−
 we have

The variance and autocovariances of the composite error term may be esti-
mated from the residuals. Furthermore, in Appendix A we show how we estimate the 
covariances between the composite errors of different observational units. Let the 
estimates of �iit,t−s

��
, �

ijt,t−sB

��
 and �ijt,t−sB

��
 (s = 0, 1, 2) be 𝜎̂iit,t−s

𝜉𝜉
, 𝜎̂

ijt,t−sB

𝜉𝜉
 and 𝜎̂ijt,t−sB

𝜉𝜉
, 

respectively. Consider the following vector equation

�
ijt,t−1B

��
=Cov(�it,�j,t−1)=−

1

NB+1

(
�2
��
+ (1+�)2�2

uu

)
,

�
ijt,t−2B

��
=Cov(�it,�j,t−2)=

��2
uu

NB+1

�
ijt,t−sB

��
=Cov(�it,�j,t−s)=0∀s≥3.

�
ijttB

��
=Cov(�it,�jt)=

2

NB−1

(
�2
��
+ (1+�+�2)�2

uu

)
,

�
ijt,t−1B

��
=Cov(�it,�j,t−1)=−

1

NB−1

(
�2
��
+ (1+�)2�2

uu

)
,

�
ijt,t−2B

��
=Cov(�it,�j,t−2)=

��2
uu

NB−1

�
ijt,t−sB

��
=Cov(�it,�j,t−s)=0∀s≥3.

Cov(�it,�j,t−s)=0∀s.

(7)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎̂iitt
𝜉𝜉

𝜎̂
iit,t−1

𝜉𝜉

𝜎̂
iit,t−2

𝜉𝜉

𝜎̂
ijttB

𝜉𝜉

𝜎̂
ijt,t−1B

𝜉𝜉

𝜎̂
ijt,t−2B

𝜉𝜉

𝜎̂
ijttB

𝜉𝜉

𝜎̂
ijt,t−1B

𝜉𝜉

𝜎̂
ijt,t−2B

𝜉𝜉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2(1+𝛽IV +𝛽2
IV
)

−1 −(1+𝛽IV )
2

0 𝛽IV

2∕(NB+1) [2∕(NB+1)](1+𝛽IV +𝛽2
IV
)

−1∕(NB+1) −[1∕(NB+1)](1+𝛽IV )
2

0 [1∕(NB+1)]𝛽IV
2∕(NB−1) 2∕(NB−1)](1+𝛽IV +𝛽2

IV
)

−1∕(NB−1) −[1∕(NB−1)](1+𝛽IV )
2

0 [1∕(NB−1)]𝛽IV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
𝜎2
𝜀𝜀

𝜎2
uu

�
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0
r1
r2

r
B

0

r
B

1

r
B

2

rB
0

rB
1

rB
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where the last vector on the right-hand side contains errors. We estimate the two 
second-order parameters, �2

��
 and �2

uu
, by applying the OLS formula to Equation 

(7). To assess estimation uncertainty related to the estimates of �2
��

 and �2
uu

, we 
apply bootstrapping; see Appendix B.

In empirical work, attention is often devoted to the standard deviation of 
productivity less the mean productivity of the establishments that are present in a 
specific year. Within our (superpopulation) framework, this measure corresponds 
approximately to 

√
�2
yy

 and 
√

�2
y∗y∗

, where the former is the standard deviation of 

observed log-productivity and the latter a model-based measure after correction 
for measurement error. Thus, our estimates of 

√
�2
yy

 and 
√

�2
y∗y∗

 should produce 

numbers which are comparable to those reported elsewhere in the literature. 

3. E mpirical Application

We apply our framework using unbalanced panel data for manufacture of 
food products in Norway from the years 2000–2014. Our data on gross output are 
from the Central Register of Establishments and Enterprises and data for labor 
input from the State Register of Employers and Employees.4 Table 1 provides 
information about the number of observations and about properties of the unbal-
anced panel data set for the industry, whereas Table 2 provides summary statistics 
on the (untransformed) productivity variable. Nominal gross production is mea-
sured in 1,000s of NOK, whereas labor input is measured as number of man-hours. 
The mean value added per man hour worked over the sample period is NOK 1,410 
per man hour, while the median is somewhat lower, at NOK 1,003 per man hour. 
In line with findings in other countries, there is also a wide labor productivity 
spread across establishments that manufacture food products in Norway. The stan-
dard deviation is about 85 percent of the mean labor productivity level.

We have looked at the time series properties of the observed (log-transformed) 
productivity variable to see whether trend stationarity is a reasonable assumption. 
To this end, we have employed the balanced part of the panel data set5 for the 
industry and considered the test provided by Harris and Tzavalis (1999).6 The test 
statistic is based on a first-order autoregressive regression augmented with estab-
lishment-specific fixed effects and establishment-specific linear trends and fixed-T 
asymptotics. Under the null hypothesis non-stationarity prevails. We find that the 
null-hypothesis is firmly rejected. The significance probability is for practical rea-
sons equal to zero.

Besides showing estimation results based on the full data set, we also present, in 
Table 3, results from two sub-periods, 2005–2014 and 2000–2009. These two periods 
are considered for reasons of robustness. Using the full sample, the autoregressive 
slope parameter,�, is estimated to be 0.794. The estimate is clearly significant, with 

4See https​://www.nav.no/en/Home/Emplo​yers/NAV+State​+Regis​ter+of+Emplo​yers+and+Emplo​
yees

5See Table 1.
6This part of the calculations has been carried out using Stata version 15.1. TSP version 5.1 was 

used for all other calculations.

https://www.nav.no/en/Home/Employers/NAV+State+Register+of+Employers+and+Employees
https://www.nav.no/en/Home/Employers/NAV+State+Register+of+Employers+and+Employees
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a t-value (based on a robust estimate of the standard error) of about 4.3. Table 3 
also reports the estimates of the two variance parameters. When the full sample is 
used, the estimates of productivity shock variance, �2

��
, and of measurement error 

variance, �2
uu
, are 0.136 and 0.018, respectively. The corresponding results using 

data for the two sub-periods are not very far from those obtained using all data. In 
Appendix B, we report the results of an exercise in which we used bootstrapping in 
the full data case to generate standard errors of the estimates of �2

uu
 and �2

��
. The 

t-value of the estimate of measurement error variance, �2
uu
, is about 2.4. In a one-

sided test, this corresponds to a p-value of about 0.009. Thus, the estimate of the 
measurement error variance is significant. As mentioned in Appendix B, some of 
the replications needed to be disregarded because of a negative estimate of the mea-
surement error variance or because the estimate of the autoregressive parameter, 
�, exceeded 1. The occurrence of negative estimates of error component variances 
under unconstrained estimation is a well-known problem in panel data economet-
rics; see for instance Maddala (1971) and more recently Bun et al. (2017). Thus, the 
quality of the obtained standard errors must be evaluated in view of this feature.

It is possible to estimate the two variance parameters, �2
��

 and �2
uu

, without 
involving cross-moments of residuals between different observational units. This 
option corresponds to omitting the last six rows of Equation (7). The estimation 
results using this simplified procedure are very similar to those reported in Table 3. 
The reason is that all moments related to different observational units are very 
small, as are the corresponding values in the 9 × 2 matrix multiplied by the vector 
consisting of the two variances in Equation (7).

From the estimates of the two variance parameters we can derive the propor-
tion of the variation of the composite error terms stemming from productivity 
shock and measurement error, respectively. The results are reported in Table 4. We 
carry out the decomposition both for the full sample and for the two subperiods. 
The last column of Table 4 shows the results for the full sample covering the years 
2000–2014. When this period is considered, about 18 per cent of the variation of 
the composite error can be attributed to measurement error, whereas the remain-
ing 82 percent can be attributed to productivity shocks. Thus, measurement error 
captures a substantial part of the variation in composite error.

TABLE 1  
Properties of the unbalanced panel data set

No. of obs. No. of obs. Units
No. of obs. units 
present in all years

No. of obs. units without 
contiguous time series

25,953 3,875 600 668

TABLE 2  
Summary statistics based on establishment-specific means of untransformed labor productivitya 

No. of obs. units Mean Std. dev.
First 
quartile Median

Third 
quartile Min. Max.

3,875 1.410 1.203 0.574 1.003 1.848 0.103 10.098
aThe total number of observations is 25,953.
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To relate our results to the applied literature on productivity dispersion, we 
focus in Table 5 on the standard deviation of productivity. We report results show-
ing the difference between the observed standard deviation, 

√
s2
yy

, and the esti-

mated standard deviation of latent productivity, operationalized as √
𝜎̂2
y∗y∗

=
√
s2
yy
− 𝜎̂2

uu
. The observed variance of log productivity based on data from 

all years, i.e. s2
yy

 is taken as the estimator of �2
yy

. The results reported in Table 5 

provide information about the positive bias caused by neglecting measurement 
error when reporting figures on productivity dispersion. The effect is fairly small, 
amounting to about one percent for the full sample, nor is it very far from one 
percent when the two sub-periods are considered.

A one percent contribution from measurement error to productivity disper-
sion is relatively small. By way of comparison, it should be noted that the con-
tribution from measurement error in Norway may be lower than in many other 
countries. The reason is the long-standing tradition in Scandinavian countries of 
using administrative data for research purposes and in the construction of the 
National Accounts. As pointed out by Barth (2012), administrative data are accu-
rate, because they are entered for purposes such as accounting, tax reporting etc. 
that are subject to strict control and auditing rules. In addition, and in contrast to 
survey data, many of the administrative registers contain the entire population, 
which eliminates the problem of sampling error. In this article, we have used data 
on gross output from the Central Register of Establishments and Enterprises and 
data on labor input from the State Register of Employers and Employees, which 
is a matched employer-employee data set. Given that data based on administrative 
registers are less prone to measurement error, the contribution of measurement 
error to productivity dispersion may be larger in countries where productivity data 
are based on surveys. The empirical framework we have outlined in this article can 
be used to test the merit of this hypothesis, or to analyze the extent to which mea-
surement error can explain the size of productivity dispersion in other countries, 
but this is an area we leave open for future research.

TABLE 3  
Estimates of first and second order parametersa 

Time period

� �2
��

�2
uu

Estimate t-valueb  Estimate Estimate

2000-2014 0.794 4.274 0.136 0.018
2005-2014 0.626 3.529 0.120 0.025
2000-2009 0.671 2.622 0.125 0.013

aUsing data for the full-time period 2000–2014, the number of observations used to estimate � and 
the two variance parameters are 12,635 and 8,831, respectively. Using data for the period 2005–2014, 
the number of observations used to estimate � and the two variance parameters are 6,290 and 3,592, 
respectively. Using data for the period 2000–2009, the numbers of observations used to estimate � and 
the two variance parameters are 7,483 and 4,282, respectively.

bBased on analytical formula for robust standard errors.
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4. C onclusion

In this article, we have outlined a novel procedure for identifying the role of 
measurement error in explaining empirical productivity dispersion across estab-
lishments. The starting point of our framework is the classical errors-in-variable 
model consisting of a measurement equation and a structural equation for latent 
productivity. The key idea in our identification strategy has been to estimate mea-
surement error variance in order to deduce the variance of the latent productivity 
variable. Specifically, we have estimated a differenced demeaned dynamic panel 
data model where establishment-specific productivity is modelled as a first-order 
autoregressive process. Using the case of manufacture of food products in Norway 
as an illustrative example, we found that about 1 percent of the measured disper-
sion is due to measurement error.

A topic that deserves more attention in further work is the presence of neg-
ative estimates of error component variances, see e.g. Bun et al. (2017). In this 
article, this feature emerged when obtaining standard errors of the estimate of 
measurement error variance by means of non-parametric bootstrapping. Some of 
the replications had to be disregarded.
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