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The System of National Accounts (SNA) requires separate estimates for the land and structure com-
ponents of a commercial property. Using transactions data for the sales of office buildings in Tokyo, 
a hedonic regression model (the “builder’s model”) was estimated and this model generated an overall 
property price index as well as subindexes for the land and structure components of the office buildings. 
The builder’s model was also estimated using appraisal data on office building real estate investment 
trusts (REITs) for Tokyo. These hedonic regression models also generated estimates for net depreciation 
rates, which can be compared. Finally, the Japanese government constructs annual official land prices 
for commercial properties based on appraised values. The paper compares these official land prices with 
the land prices generated by the hedonic regression models based on transactions data and on REIT 
data. The results reveal that commercial property indexes based on appraisal and assessment prices lag 
behind the indexes based on transaction prices.

JEL Codes: C2, C23, C43, D12, E31, R21

Keywords: commercial property price indexes, transaction-based indexes, appraisal prices, assessment 
prices, land- and structure-price indexes, hedonic regressions

1. I ntroduction

When estimating commercial property price indexes, we are confronted with 
the following two problems: how to incorporate quality adjustments in the estima-
tion method and which data source to use in the estimation procedure.

Research studies on commercial property price indexes have emphasized the 
problem of data selection when formulating indexes. Traditionally, transaction 
prices (also called “market prices” in the literature) have usually been used to esti-
mate price indexes. However, the number of commercial property market trans-
actions is extremely small. Furthermore, even if  a sizable number of transaction 
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prices can be obtained, the heterogeneity of the properties is so pronounced that 
it is difficult to compare like with like, and thus the construction of reliable con-
stant-quality price indexes becomes very difficult.

Under such circumstances, many commercial property price indexes have 
been constructed using either appraisal prices from the real estate investment 
market or by using assessment prices for property tax purposes. The rationale for 
these price indexes is that, since appraisal prices and assessment prices for prop-
erty tax purposes are regularly surveyed for the same commercial property, 
indexes based on these surveys hold most characteristics of  the property con-
stant,1 thus greatly reducing the heterogeneity problem as well as generating a 
wealth of  data.

However, while appraisal prices look attractive for the construction of  price 
indexes, they are somewhat subjective; that is, exactly how are these appraisal 
prices constructed? Thus these prices lack the objectivity of  market selling prices. 
Such considerations have led to the development of  various arguments concern-
ing the precision and accuracy of  appraisal and assessment prices when used in 
measuring price indexes (on these issues, see Shimizu and Nishimura, 2006). In 
particular, the literature on this issue has pointed out that an appraisal-based 
index will typically lag actual turning points in the real estate market.2 Geltner 
et al. (1994) clarified the structure of  bias in the National Council of  Real Estate 
Investment Fiduciaries (NCREIF) Property Index, a representative U.S. index 
based on appraisal prices. In a later study, Geltner and Goetzmann (2000) esti-
mated an index using commercial property transaction prices and demonstrated 
the magnitude of  errors and the degree of  smoothing in the NCREIF Property 
Index. These problems plague not only the NCREIF Property Index, but all 
indexes based on appraisal prices, including the MSCI–Investment Property 
Databank (IPD) Index.

With specific reference to Japan’s real estate bubble period, Nishimura and 
Shimizu (2003), Shimizu and Nishimura (2006), and Shimizu et  al. (2012) esti-
mated hedonic price indexes based on commercial property and indexes based 
on residential housing transaction prices, contrasted them with indexes based on 
appraisal prices, and statistically laid out their differences. An examination of the 
estimated results revealed that during the bubble period, when prices climbed dra-
matically, indexes based on appraisal prices did not catch up with transaction price 
increases. Similarly, during the period of falling prices, appraisal-based indexes did 
not keep pace with the decline in prices.

Furthermore, in the case of appraisal prices for investment properties, a 
systemic factor of appraiser incentives emerges as an additional problem. This 
problem differs intrinsically from the lagging and smoothing problems that arise 
in appraisal-based methods. Specifically, the incentive problem involves inducing 

1Two important characteristics that are not held constant are the age of the structure and the 
amount of capital expenditure on the property between the survey dates. Changes in these characteris-
tics are an important determinant of the property price.

2Another problem with appraisal based indexes is that they tend to be smoother than indexes that 
are based on market transactions. This can be a problem for real estate investors, since the smoothing 
effect will mask the short-term riskiness of real estate investments. However, for statistical agencies, 
smoothing short-term fluctuations will probably not be problematic.
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higher valuations from appraisers in order to bolster investment performance (on 
this point, see Crosby et al. 2010).

In this connection, Bokhari and Geltner (2012) and Geltner and Bokhari 
(2018) estimated quality-adjusted price indexes by running a time dummy hedonic 
regression using transaction price data. Geltner (1997) also used real estate prices 
determined by the stock market in order to examine the smoothing effects of 
the use of  appraisal prices. Finally, Geltner et al. (2010), Shimizu et al. (2015), 
Shimizu (2016), and Diewert and Shimizu (2017) proposed various estimation 
methods for commercial property price indexes using real estate investment trust 
(REIT) data.

In this paper, we will examine the three alternative data sources suggested in 
the literature that enable us to construct land-price indexes for commercial prop-
erties: (i) sales transactions data; (ii) appraisal data for REITs; and (iii) assessed 
values of land for property taxation purposes. We will utilize these three sources 
of data for commercial properties in Tokyo over 44 quarters covering the period 
Q1:2005 to Q4:2015 and compare the resulting land prices.

Section 2 explains our data sources. Sections 3 and 4 use sales transactions data 
and a hedonic regression model that allows us to decompose sale prices into land 
and structure components. The model of structure depreciation used in Section 3 
is a single geometric rate and Section 4 generalizes this model to allow for multiple 
geometric rates. Section 5 implements the same hedonic regression model using the 
same transactions dataset, but we switch to a piecewise linear depreciation model. 
Section 6 compares the alternative depreciation schedules.

It will turn out that the land-price series that are generated using quarterly 
transactions data are very volatile and thus they may not be suitable for statistical 
agency use. Thus, in Section 7, we look at some alternative methods for smoothing 
the raw land-price indexes.

Section 8 estimates a hedonic regression model using quarterly appraisal val-
ues for 41 Tokyo office buildings over the sample period. Since we have panel data 
for this application, our hedonic regression model is somewhat different from our 
earlier models.

Section 9 estimates quality-adjusted land prices for commercial properties 
using tax assessment data. Section 10 compares our land price indexes from the 
three sources of data. Section 11 constructs overall property price indexes for Tokyo 
commercial properties using the models estimated in the previous sections; that is, 
we combine the land-price indexes with a structure-price index to obtain overall 
property price indexes. We also estimate a traditional log price time dummy hedonic 
regression model and compare the resulting index with our overall indexes. Section 
12 concludes.

In summary: there are two main purposes for our paper: (i) using hedonic 
regression techniques, we show how overall property price indexes as well as land-
price indexes for commercial office buildings in Tokyo can be constructed using 
information on property sales and property appraisal information for REITs, and 
we compare the resulting land-price indexes with a land-price index based on prop-
erty tax assessment data; and (ii) we show how the hedonic regressions can be used 
to estimate commercial property depreciation rates. Our focus is on decomposing 
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property values into land and structure components, because this decomposition is 
required in the Balance Sheets for the System of National Accounts (SNA) and it is 
also required in order to calculate the Total Factor Productivity of the Commercial 
Office Sector.

2.  Data Description

This study compiled the following three types of micro-data relating to com-
mercial properties in the Tokyo office market: (i) the transaction price data com-
piled by the Japanese Ministry of Land, Infrastructure, Transport, and Tourism 
(MLIT); (ii) the appraisal prices periodically determined in the Tokyo office REIT 
market; and (iii) the “official land prices” (OLPs) surveyed by the MLIT since 
1970. OLPs are based on appraisals that are released on January 1st of each year. 
In Japan, asset taxes relating to land, such as inheritance taxes and fixed assets 
taxes, are assessed on the basis of these OLPs. Thus official land prices are consid-
ered as assessment data for tax purposes. As official land prices are exclusively 
based on surveys of land prices, they do not include structure prices.3

Using the first two data sources, land-price indexes were estimated using the 
“builder’s model.” These land-price indexes will be compared with those estimated 
using OLPs in Section 5.

Using the first two data sources, land-price indexes were estimated using the 
builder’s model. These land-price indexes will be compared with those estimated 
using OLPs in Section 5.

Our analysis covers the period from 2005 to 2015. The data variables compiled 
are listed in Table 1.

Table 2 shows a summary of the statistical parameters for the three data 
sources; that is, transaction prices, REIT appraisal prices, and OLPs. The compiled 
data consisted of 1,907 MLIT transaction prices, 1,804 REIT prices, and 6,242 
MLIT official land prices (i.e. OLPs).4

3. T he Builder’s Model: Preliminary Results Using Transactions Data

We will use the MLIT commercial office building transactions data in this 
section and in Sections 4–7.

The builder’s model for valuing a commercial property postulates that the 
value of a commercial property is the sum of two components: the value of the 
land on which the structure sits plus the value of the commercial structure.

In order to justify the model, consider a property developer who builds a 
structure on a particular property. The total cost of the property after the structure 
is completed will be equal to the floor-space area of the structure, say S square 

3For the details on how appraisal and assessment prices are made in Japan, see Shimizu (2016).
4It should be noted that the average amount of each property characteristic differs substantially in 

many cases across our three samples. These differences may account for some of the differences in the 
land indexes that are generated by the three sources of data. We note that the MLIT data are sparse for 
some quarters. The lowest number of observations were quarters 18, 26, and 32, with 16, 20, and 26 
observations, respectively.
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meters (m2) times the building cost per square meter, �t during quarter or year t, 
plus the cost of the land, which will be equal to the cost per square meter, �t during 
quarter or year t, times the area of the land site, L. Now think of a sample of prop-
erties of the same general type, which have prices or values Vtn in period t5 and 
structure areas Stn and land areas Ltn for n = 1, …, N(t), where N(t) is the number 
of observations in period t. Assume that these prices are equal to the sum of the 
land and structure costs plus error terms �tn, which we assume are independently 
normally distributed with zero means and constant variances. This leads to the 

5The period index t runs from 1 to 44, where period 1 corresponds to Q1:2005 and period 44 cor-
responds to Q4:2015.

TABLE 1  
Variables from the Three Data Sources

Symbols Variables Contents Unit(s)

V Price Transaction price and appraisal price million yen
in total

L Total land area Land area of building m2

S Total floor space Floor space of building m2

A Age of building Age of building at the time of years
at the time of transaction/appraisal
transaction

H Number of stories Number of stories in the building stories
DS Distance to the Distance to the nearest station meters

nearest station
TT Travel time to Minimum railway riding time in minutes

central business daytime to Tokyo Central Station
district

WDk Location (ward) kth ward = 1, (0, 1)
dummy other district =0 (k = 0, …, K)

Dt Time dummy tth quarter = 1, (0, 1)
(quarterly) other quarter = 0 (t = 0, …, T)

TABLE 2  
Summary Statistics (with Standard Deviations in Parentheses)

MLIT REIT OLP

V: selling price of office building 394.18 6,686.60 1,264.3
(million yen) (337.76) (4,055.60) (1,304.1)
S: structure floor area (m2) 834.00 8,509.70 −

(535.19) (5,463.90)
L: land area (m2) 239.27 1,802.10 229.94

(135.08) (1,580.20) (217.18)
H: total number of stories 5.75 10.12 −

(2.14) (3.30)
A: age (years) 24.23 19.14 −

(10.61) (6.80)
DS: distance to nearest station 387.65 308.29 347.24

(meters) (238.45) (170.04) (254.79)
TT: Time to Tokyo Central Station 19.63 15.88 21.74

(minutes) (8.23) (5.10) (8.54)
PS: structure construction price 0.2347 0.2359 −

per square meter (million yen) (0.0103) (0.0102)
Number of observations 1,907 1,804 6,242
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following hedonic regression model for period t, where the �t and �t are the parame-
ters to be estimated in the regression6: 

Note that the two characteristics in our simple model are the quantities of 
land Ltn and the quantities of structure floor space Stn associated with property n 
in period t and the two constant-quality prices in period t are the price of a square 
meter of land �t and the price of a square meter of structure floor space �t.

The hedonic regression model defined by equation (1) applies to new struc-
tures. But it is likely that a model that is similar to equation (1) applies to older 
structures as well. Older structures will be worth less than newer structures due to 
the depreciation of the structure. Assuming that we have information on the age of 
the structure n at time t, say A(t,n), and assuming a geometric (or declining bal-
ance) depreciation model, a more realistic hedonic regression model than that 
defined by equation (1) is the following basic builder’s model7: 

where the parameter δ reflects the net geometric depreciation rate as the structure ages 
by one additional period. Thus if the age of the structure is measured in years, we 
would expect an annual net depreciation rate to be between 2 and 3 percent.8 Note 
that equation (2) is now a non-linear regression model whereas equation (1) was a 
simple linear regression model.9 The period-t constant-quality price of land will be 
the estimated coefficient for the parameter �t and the price of a unit of a newly built 
structure for period t will be the estimate for �t. The period-t quantity of land for 
commercial property n is Ltn and the period-t quantity of structures for commercial 
property n, expressed in equivalent units of a new structure, is (1−�t)

A(t,n)Stn, where 
Stn is the floor-space area of commercial property n in period t.

Note that the above model is a supply-side model as opposed to the demand-
side model of  Muth (1971) and McMillen (2003). Basically, we are assuming com-
petitive suppliers of commercial properties so that we are in Case (a) of Rosen 
1974, p. 44), where the hedonic surface identifies the structure of supply. This 

6Other papers that have suggested hedonic regression models that lead to additive decompositions 
of property values into land and structure components include Clapp 1980, pp. 257–8), Bostic et al. 
2007, p. 184), de Haan and Diewert (2011), Diewert (2010, 2008), Francke 2008, p. 167), Koev and 
Santos Silva (2008), Rambaldi et  al. (2010), Diewert et  al. (2015, 2011), Diewert and Shimizu  
(2015b, 2016, 2017), and Rambaldi et al. (2016).

(1) Vtn=�tLtn+�tStn+�tn, t=1,… ,44, n=1,… ,N(t).

7This formulation follows that of Diewert (2010, 2008), de Haan and Diewert (2011), Diewert et al. 
(2015), and Diewert and Shimizu (2015b, 2016, 2017) in assuming that the property value is the sum of 
land and structure components but that movements in the prices of structures are proportional to an 
exogenous structure-price index. This formulation is designed to be useful for national income accoun-
tants who require a decomposition of property value into structure and land components. They also 
need the structure index, which in the hedonic regression model needs to be consistent with the struc-
ture-price index that they use to construct structure capital stocks. Thus the builder’s model is particu-
larly suited to national accounts purposes (see Diewert and Shimizu, 2015a; Diewert et al., 2016).

(2) Vtn=�tLtn+�t(1−�)A(t,n)Stn+�tn; t=1,… ,44, n=1,… ,N(t),

8This estimate of depreciation is regarded as a net depreciation rate because it is equal to a “true” 
gross structure depreciation rate less an average renovations appreciation rate. Since we do not have 
information on renovations and major repairs to a structure, our age variable will only pick up average 
gross depreciation less average real renovation expenditures.

9We used Shazam to perform the non-linear estimations (see White, 2004). Note that equation (2) 
is estimated as a single non-linear regression using the data for all 44 quarters.
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assumption is justified for the case of newly built offices but it is less well justified 
for sales of existing commercial properties.

There is a major problem with the hedonic regression model defined by 
equation (2): the multicollinearity problem. Experience has shown that it is usu-
ally not possible to estimate sensible land and structure prices in a hedonic 
regression such as that defined by equation (2) due to the multicollinearity 
between lot size and structure size.10 Thus, in order to deal with the multicol-
linearity problem, we draw on exogenous information on the cost of  building 
new commercial properties from the MLIT and we assume that the price of  new 
structures is equal to an official measure of  commercial building costs (per 
square meter of  building structure), pSt. Thus we replace �t in equation (2) by pSt 
for t = 1, …, 44. This reduces the number of  free parameters in the model by 44.

Experience has also shown that it is difficult to estimate the depreciation rate 
before obtaining quality-adjusted land prices. Thus, in order to get preliminary 
land-price estimates, we temporarily assumed that the annual geometric depre-
ciation rate δ in equation 2 was equal to 0.025. The resulting regression model 
becomes one defined by the following equation: 

The final log likelihood (LL) for this Model 1 was −13,328.15 and the R2 value 
was 0.4003.11

In order to take into account possible neighborhood effects on the price of land, 
we introduce ward dummy variables, DW , tnj, into the hedonic regression given in 
equation (3). There are 23 wards in Tokyo special district; therefore, we made 23 ward 
or locational dummy variables.12 These 23 dummy variables are defined as follows: 

We now modify the model defined by equation (3) to allow the level of land 
prices to differ across the wards. The new non-linear regression model is as follows13: 

10On the multicollinearity problem, see Schwann (1998) and Diewert et al. (2015, 2011).

(3) Vtn=�tLtn+pSt(1−0.025)A(t,n)Stn+�tn; t=1,… ,44, n=1,… ,N(t).

11Our R2 concept is the square of the correlation coefficient between the dependent variable and 
the predicted dependent variable.

12The 23 wards (with the number of observations in brackets) are as follows: 1, Chiyoda (191);  
2, Chuo (231); 3, Minato (205); 4, Shinjuku (203); 5, Bunkyo (97); 6, Taito (122); 7, Sumida (74);  
8, Koto (49); 9, Shinagawa (69); 10, Meguro (28); 11, Ota (64); 12, Setagaya (67); 13, Shibuya (140);  
14, Nakano (39); 15, Suginami (39); 16, Toshima (80); 17, Kita (30); 18, Arakawa (42); 19, Itabashi (35); 
20, Nerima (40); 21, Adachi (19); 22, Katsushika (18); 23, Edogawa (25).

for t=1,… ,44, n=1,… ,N(t), j=1,… ,23

(4) DW ,tnj ≡
1 if observation n in period t is in ward j of Tokyo;

0 if observation n in period t is not in ward j of Tokyo.

13From this point on, our non-linear regression models are nested; that is, we use the coefficient 
estimates from the previous model as starting values for the subsequent model. Use of this nesting 
procedure is essential to obtaining sensible results from our non-linear regressions. The non-linear  
regressions were estimated using Shazam (see White, 2004).

(5)
Vtn =�t

(

23
∑

j=1

�jDW ,tnj

)

Ltn+pSt(1−0.025)A(t,n)Stn+�tn;

t=1,… ,44, n=1,… ,N(t).
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Not all of the land time dummy-variable coefficients (the �t) and the ward 
dummy-variable coefficients (the �j) can be identified. Thus we impose the follow-
ing normalization on our coefficients: 

The final LL for the model defined by equations (5) and (6) was −12,956.60 
and the R2 value was 0.5925. Thus there was a large increase in the R2 value and 
a huge increase in the LL of 371.55 over the previous model. However, many of 
the wards had only a small number of observations and thus it is unlikely that our 
estimated �j for these wards would be very accurate.

In order to deal with the problem of too few observations in many wards, we 
used the results of the above model to group the 23 wards into four combined 
wards based on their estimated �j coefficients. The Group 1 high-priced wards were 
1–3 and 13 (their estimated �j coefficients were greater than 1), the Group 2  
medium-high-priced wards were 4–6, 9, and 14 (0.6 < 𝜔j ≤ 1), the Group 3 medium-
low-priced wards were 7, 8, 10, 12, 15, and 16 (0.4 < 𝜔j ≤ 0.6), and the Group 4 
low-priced wards were 11 and 17–23 (�j ≤ 0.4).14 We reran the non-linear regression 
model defined by equations (5) and (6) using just the four combined wards (call 
this Model 2); the resulting LL was −12,974.31 and the R2 value was 0.5850. Thus 
combining the original wards into grouped wards resulted in a small loss of fit and 
a decrease in LL of 17.71 when we decreased the number of ward parameters by 
19. We regarded this loss of fit as an acceptable tradeoff.

In our next model, we introduce some non-linearities into the pricing of the 
land area for each property. The land-plot areas in our sample of properties run from 
100 to 790 m2. Up to this point, we have assumed that land plots in the same grouped 
ward sell at a constant price per square meter of lot area. However, it is likely that 
there is some non-linearity in this pricing schedule; for example, it is likely that very 
large lots sell at an average price that is below the average price of medium sized lots. 
In order to capture this non-linearity, we initially divided up our 1,907 observations 
into seven groups of observations based on their lot size. The Group 1 properties had 
lots less than 150 m2, the Group 2 properties had lots greater than or equal to 150 m2 
and less than 200 m2, the Group 3 properties had lots greater than or equal to 200 m2 
and less than 300 m2, and so on, up to the Group 7 properties, which had lots greater 
than or equal to 600 m2. However, there were very few observations in Groups 4–7, 
so we added these groups to Group 4.15 For each observation n in period t, we define 
the four land dummy variables, DL, tnk, for k = 1, …, 4, as follows: 

These dummy variables are used in the definition of the piecewise linear func-
tion of Ltn, fL(Ltn), defined as follows: 

(6) �1=1.

14The estimated combined ward-relative land-price parameters turned out to be as follows: 
�
1
= 1.3003, �

2
= 0.75089, �

3
= 0.49573, and �

4
= 0.25551. The sample probabilities of an observa-

tion falling in the combined wards were 0.402, 0.278, 0.177, and 0.143, respectively.
15The sample probabilities of an observation falling in the seven initial land size groups were as 

follows: 0.291, 0.234, 0.229, 0.130, 0.050, 0.034, and 0.033.

(7) DL,tnk ≡
1 if observation tn has land area that belongs to Group k;

0 if observation tn has land area that does not belong to Group k.
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where the �k are unknown parameters and L1 ≡ 150, L2 ≡ 200, and L3 ≡ 300.  
The function fL(Ltn) defines a relative valuation function for the land area of a com-
mercial property as a function of the plot area.

The new non-linear regression model is as follows: 

Comparing the models defined by equations (5)16 and (9), it can be seen that 
we have added an additional four land-plot size parameters, �1, … , �4, to the model 
defined by equation (5) (with only four ward dummy variables). However, looking 
at equation (9), it can be seen that the 44 land time parameters (the �t), the four 
ward parameters (the �j), and the four land-plot size parameters (the �k) cannot all 
be identified. Thus we impose the following identification normalizations on the 
parameters for Model 3 defined by equations (9) and the following: 

Note that if  we set all of the �k equal to unity, Model 3 collapses down to 
Model 2. The final LL for Model 3 was an improvement of 59.65 over the final 
LL for Model 2 (for adding three new marginal price of land parameters), which 
is a highly significant increase. The R2 value increased to 0.6116 from the pre-
vious model’s R2 value of 0.5850. The parameter estimates turned out to be 
�2 = 1.4297, �3 = 1.2772, and �4 = 0.2973. For small land-plot areas of less than 
150 m2, we set the (relative) marginal price of land equal to 1 per square meter. 
As the lot sizes increased from 150 m2 to 200 m2, the (relative) marginal price of 
land increased to �2 = 1.4297 per square meter. For the next 100 m2 of  lot size, the 
(relative) marginal price of land decreased to �3 = 1.2772 per square meter. For lot 
sizes greater than 200 m2, the (relative) marginal price of land decreased to 0.2973 
per square meter. Thus the average cost of land per square meter initially increases 
and then tends to decrease as the lot size becomes larger.

The footprint of  a building is the area of the land that directly supports the 
structure. An approximation to the footprint land area for property n in period t is 
the total structure area Stn divided by the total number of stories in the structure 
Htn. If  we subtract the footprint land area from the total land area, TLtn, we obtain 
the excess land,17 ELtn defined as follows: 

(8)

fL(Ltn)≡DL,tn1�1Ltn+DL,tn2[�1L1
+�

2
(Ltn−L1

)]

+DL,tn3[�1L1
+�

2
(L

2
−L

1
)+�

3
(Ltn−L2

)]

+DL,tn4[�1L1
+�

2
(L

2
−L

1
)+�

3
(L

3
−L

2
)+�

4
(Ltn−L3

)],

(9)
Vtn= �t

(

4
∑

j=1

�jDW ,tnj

)

fL(Ltn)+pSt(1−�)A(t,n)Stn+�tn;

t=1,… ,44, n=1,… ,N(t).

16We compare equation (9) to the modified equation (5) where we have only four combined-ward 
dummy variables in the modified equation (5) rather than to the original 23 ward dummy variables.

(10) �1≡1; �1≡1.

17This is land that is usable for purposes other than the direct support of the structure on the land 
plot. Excess land was first introduced as an explanatory variable in a property hedonic regression model 
for Tokyo condominium sales by Diewert and Shimizu 2016, p. 305).
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In our sample, excess land ranged from 1.083 m2 to 562.58 m2. We grouped 
our observations into five categories, depending on the amount of excess land that 
pertained to each observation. Group 1 consists of observations tn where ELtn < 50;  
Group 2 observations such that 50 ≤ ELtn < 100; Group 3 observations such that 
100 ≤ ELtn < 150; Group 4 observations such that 150 ≤ ELtn < 300; and Group 5 
observations such that ELtn ≥ 300.18 Now define the excess-land dummy variables, 
DEL, tnm, as follows: 

We will use the above dummy variables as adjustment factors to the price of 
land. As will be seen, in general, the more excess land a property possessed, the 
lower was the average per meter squared value of land for that property.19

The new Model 4 excess-land non-linear regression model is as follows: 

However, looking at equations (13) and (8), it can be seen that the 44 land-
price parameters (the �t), the four combined-ward parameters (the �j), the four 
land-plot size parameters (the �k), and the five excess-land parameters (the �m) 
cannot all be identified. Thus we imposed the following identifying normalizations 
on these parameters: 

Note that if  we set all of the �m equal to unity, Model 4 collapses down to 
Model 3. The final LL for Model 4 was an improvement of 23.99 over the final LL 
for Model 3 (for adding four new excess-land parameters), which is a significant 
increase. The R2 value increased to 0.6207 from the previous model’s R2 value of 
0.6116. The �m parameter estimates turned out to be �2 = 0.9173, �3 = 0.7540, 
�4 = 0.7234, and �5 = 0.8611. Thus excess land does reduce the average per meter 
price of land.

The non-linear estimating equations for Model 5 are exactly the same as those 
defined by equations (13) except that we estimated the geometric depreciation rate 
δ instead of assuming that it was equal to 0.025. The final LL increase for Model 5 
(for adding one new parameter) was 50.58, which was highly significant. However, 

(11) ELtn≡Ltn− (Stn∕Htn); t=1,… ,44, n=1,… ,N(t).

18The sample probabilities of an observation falling in the five excess-land size groups were as  
follows: 0.352, 0.343, 0.149, 0.114, and 0.041.

for t=1,… ,44, n=1,… ,N(t), m=1,… ,5,

(12) DEL, tnm≡
1 if observation n in period t is in excess-land Group m;

0 if observation n in period t is not in excess-land Group m.

19The excess-land characteristic was also used by Diewert and Shimizu (2016) and Burnett-Issacs 
et al. (2016) in their studies of condominium prices. The same phenomenon was observed in these stud-
ies: the more excess land that a high rise property had, the lower was the per meter land price.

(13)
Vtn= �t

(

4
∑

j=1

�jDW ,tnj

)(

5
∑

m=1

�mDEL, tnm

)

fL(Ltn)+pSt(1−�)A(t,n)Stn+�tn;

t=1,… ,44, n=1,… ,N(t).

(14) �1≡1; �1≡1; �1≡1.



Review of Income and Wealth, Series 66, Number 4, December 2020

794

© 2019 International Association for Research in Income and Wealth

the estimated δ turned out to be 0.00165, with a standard error of 0.00152, which 
is too low. The R2 value for this model was 0.6399.

It is likely that the height of the building affects the quality of the structure. 
In our sample of commercial property prices, the height of the building (the H 
variable) ranged from three stories to 14 stories. Thus initially, we had 12 build-
ing-height categories. Define the building-height dummy variables, DH , tnh, as 
follows: 

Due to the small number of observations in the last five height categories, 
we combined these dummy variables into a single height category that included 
all buildings of height 10–14 stories; that is, the new DH , tn10 was defined as 
∑14

h= 10
DH , tnh. The new Model 6 non-linear regression model is as follows: 

In addition to the normalizations in equation (14), we also imposed the nor-
malization �3 ≡ 1. Note that if  we set all of the �h equal to unity, the new model 
collapses down to Model 5.

The final LL for the new model was −12,649.26, a big improvement of 190.83 
over the final LL for Model 5 (for adding seven new height parameters). The R2 
value increased to 0.7036 from the previous model’s R2 value of 0.6207. The �4 to 
�10 parameter estimates turned out to be 1.2071, 1.4599, 1.5720, 1.5114, 2.0950, 
2.3062, and 2.5437, respectively. Recall that �3 is set equal to 1. It can be seen that 
the structure value of a property increased (with one exception) as the height of the 
building increased. The estimated geometric depreciation rate for this model was 
δ = 0.0212 (with a standard error of 0.0020). This is a very reasonable estimate for 
a wear-and-tear depreciation rate.

Recall that we used building height as a quality-adjustment factor for the 
structure portion of the property value. In our next model, we use the building 
height as a possible quality-adjustment factor for the land component of the prop-
erty. Consider two adjacent commercial office properties with the same lot size and 
building footprint, except that property A has a ten-story tower while property B 
has a modest four-story office building. In theory, the land plot for each property 
should be valued at its best potential use, but the local market may not be able to 
support two high-rise buildings in the same area. Hence the land component of 
property B may not be valued at the same level as that of property A, due to an 
accident of history. Moreover, placing a high-rise building on property B may lead 
to a decline in the land value of property A due to an impairment of views (or 

for t=1, … , 44, n=1, … ,N(t), h=3, … , 14,

(15) DH ,tnh≡
1 if observation n in period t is in a building that has height h;

0 if observation n in period t is not in a building that has height h.

(16)

Vtn= �t

(

4
∑

j=1

�jDW ,tnj

)(

5
∑

m=1

�mDEL,tnm

)

fL(Ltn)

+pSt(1−�)A(t,n)

(

10
∑

h=3

�hDH ,tnh

)

Stn+�tn; t=1,… ,44, n=1,… ,N(t).
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sunlight) from the higher stories of property A. In any case, we will introduce one 
new building-height parameter μ, which reflects the possible changes in land value 
due to the height H of  the building on the property. Thus Model 7 is defined as the 
following non-linear regression model: 

For identification purposes, we imposed the following restrictions on the 
parameters in equation (17): 

The final LL for Model 7 was −12,640.40, an improvement of 8.86 LL points 
over the final LL for Model 6 (for adding one new parameter μ). The R2 value 
increased to 0.7063 from the previous model’s R2 value of 0.7036. The estimated 
depreciation rate δ was 3.41 percent, with a standard error of 0.0077. The esti-
mated �4, … ,�10 were equal to 1.11, 1.31, 1.32, 1.11, 1.83, 2.01, and 2.12 (recall 
that �3 was set equal to 1). The estimate for μ was 0.1135, with a standard error of 
0.0339. Thus as the building height increases by one story, the land value appears 
to increase by approximately 11 percent. Thus some of the extra cash flow gener-
ated by an extra story for the structure appears to leak over into the land value of 
the property.20 

This completes our description of our preliminary hedonic regression models 
for Tokyo office buildings. In the following section, we will extend these prelimi-
nary models by estimating more complex depreciation schedules.

4. T he Builder’s Model with Multiple Geometric Depreciation Rates

In the following model, we allowed the geometric depreciation rates to differ 
after each 10-year interval (except for the last interval).21 We divided up our 1,907 
observations into five groups of observations based on the age of the structure at 
the time of the sale. The Group 1 properties had structures with a structure age less 
than 10 years, the Group 2 properties had structure ages greater than or equal to 
10 years but less than 20 years, the Group 3 properties had structure ages greater 

(17)

Vtn= �t

(

4
∑

j=1

�jDW ,tnj

)(

5
∑

m=1

�mDEL, tnm

)

(

1+�(Htn−3)
)

fL(Ltn)

+pSt(1−�)A(t,n)

(

10
∑

h=3

�hDH ,tnh

)

Stn+�tn; t=1,… ,44, n=1,… ,N(t).

(18) �1≡1; �1≡1; �1≡1; �3≡1.

20As a referee pointed out, this result may be due to omitted characteristics that are correlated with 
the building height. It should be pointed out that our estimate for μ in our final model is 0.0602 instead 
of 0.1135.

21The analysis in this section and the subsequent section follows the approach taken by Diewert 
et al. (2017). Geltner and Bokhari (2018) estimate a much more flexible model of commercial property 
depreciation using U.S. transaction data by allowing an age dummy variable for each age of building. 
This methodological approach generates a combined land and structure depreciation rate, whereas our 
approach will generate depreciation rates that apply only to the structure portion of the property value.
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than or equal to 20 years but less than 30 years, the Group 4 properties had struc-
ture ages greater than or equal to 30 years but less than 40 years, and the Group 5 
properties had structure ages greater than or equal to 40 years.22 For each observa-
tion n in period t, we define the five age dummy variables, DA, tni, for i = 1, …, 5, as 
follows: 

These age dummy variables are used in the definition of the aging function, 
gA(Atn), defined as follows23: 

Thus the annual geometric depreciation rates are allowed to change at the end 
of each decade that the structure survives.

The new Model 8 non-linear regression model is as follows: 

We imposed the normalizations �1 ≡ 1, �1 ≡ 1, �1 ≡ 1, and �3 ≡ 1. Note that 
Model 8 collapses down to Model 7 if  �1 = �2 = �3 = �4 = �5 = �. Thus the  
number of unknown parameters in Model 8 increased by four over the number  
of parameters in Model 7. The final LL for Model 8 was −12,631.21, an  
improvement of 9.19 over the final LL for Model 7 (for adding four additional 
parameters). The R2 value increased to 0.7091 from the previous model’s R2 value 
of 0.7063. The estimated depreciation rates (with standard errors in brackets) were 
as follows: �1 = 0.0487 (0.0111), �2 = 0.0270 (0.0097), �3 = 0.0096 (0.0106),24 
�4 = 0.0403 (0.0154), and �5 = −0.0319 (0.0185). Thus properties with structures 

22There were only 28 properties that had an age greater than 50 years, so these properties were 
combined with the age 40–50 properties.

(19) DA,tni ≡
1 if observation tn has a structure age that belongs to age group i;

0 if observation tn has a structure age that does not belong to age group i.

23Atn is the same as A(t,n). The aging function gA(Atn) quality-adjusts a building of age Atn into 
a comparable number of units of a new building.

(20)

gA(Atn)≡DA,tn1(1−�1)
A(t,n)+DA,tn2(1−�1)

10(1−�2)
(A(t,n)−10)

+DA,tn3(1−�1)
10(1−�2)

10(1−�3)
(A(t,n)−20)

+DA,tn4(1−�1)
10(1−�2)

10(1−�3)
10(1−�4)

(A(t,n)−30)

+DA,tn5(1−�1)
10(1−�2)

10(1−�3)
10(1−�4)

10(1−�5)
(A(t,n)−40).

(21)

Vtn= �t

(

4
∑

j=1

�jDW ,tnj

)(

5
∑

m=1

�mDEL,tnm

)

(

1+�(Htn−3)
)

fL(Ltn)

+pStgA(Atn)

(

10
∑

h=3

�hDH ,tnh

)

Stn+�tn; t=1, … , 44, n=1, … ,N(t).

24Recall that these depreciation rates are net depreciation rates. As surviving structures approach 
their middle age, renovations become important and thus a decline in the net depreciation rate is plau-
sible. The pattern of depreciation rates is similar to the comparable geometric depreciation rates that 
were observed for detached houses in Richmond (a suburb of Vancouver, Canada) by Diewert et al. 
(2017).
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that are over 40 years old tend to have a negative depreciation rate; that is, the value 
of the structure tends to increase by 3.19 percent per year.25

There are two additional explanatory variables in our dataset that may affect 
the price of land. Recall that DS was defined as the distance to the nearest subway 
station and TT as the subway running time in minutes to the Tokyo station from 
the nearest station (see Tables 1 and 2). DS ranges from 0 to 1,500 m, while TT 
ranges from 1 to 48 minutes. Typically, as DS and TT increase, the land value 
decreases.26 Model 9 introduces these new variables into the previous non-linear 
regression model given in equation (21) in the following manner: 

Thus two new parameters, η and θ, are introduced. If  these new parameters 
are both equal to 0, then Model 9 collapses down to Model 8.

The final LL for Model 9 was −12,614.70, an improvement of 16.51 over 
the final LL for Model 8 (for adding two additional parameters). The R2 value 
increased to 0.7142 from the previous model’s R2 value of 0.7091. The estimated 
walking-distance parameter was � = −0.00023 (0.000066), which indicates that the 
land value of commercial property does tend to decrease as the walking distance 
to the nearest subway station increases. However, the parameter for the estimated 
travel time to Tokyo Central Station was θ  =  0.0209  (0.0053), which indicates 
that the land value increases on average as the travel time to the Central Station 
increases, a relationship that was not anticipated. All of the estimated parameter 
coefficients and their t-statistics are listed in Table 3.

Recall that �1 was set equal to 1. The sequence of coefficients �1, �2, … , �44 
comprises our estimated quarterly commercial office building price index for the 
land component of the property value. It can be seen that this land-price index is 
quite volatile due to the sparseness of commercial property sales and the hetero-
geneity of the properties. In a subsequent section, we will show how this volatile 
land-price index can be smoothed in a fairly simple fashion.

Turning to the other estimated coefficients, it can be seen that the ward-relative 
land-price parameters, �1-�4, decline (substantially) in magnitude as we move from 
the first more expensive composite ward to the less expensive composite wards. 
The marginal value of land parameters, �1 (set equal to 1), �2, �3, and �4, exhibit 
the same inverted-U pattern that emerged in Model 3 (and persisted through all of 
the subsequent models). The excess-land parameters, �1 (set equal to 1), �2,�3,�4,  
and �5, show that excess land is generally valued less than footprint land, but the 

25This phenomenon has been observed in the housing literature before; that is, older heritage 
houses that have been extensively renovated may increase in value over time rather than depreciate as 
they age. Diewert et al. (2017) found that Richmond house structures appreciated by 2.4 percent per 
year after age 50.

26See Diewert and Shimizu (2015b), where these relationships also held for Tokyo detached houses.

(22)

Vtn= �t

(

4
∑

j=1

�jDW ,tnj

)(

5
∑

m=1

�mDEL,tnm

)

(

1+�(Htn−3)
) (

1+�(DStn−0)
)

×
(

1+�(TTtn−1)
)

fL(Ltn)+pStgA(Atn)

(

10
∑

h=3

�hDH ,tnh

)

Stn+�tn;

t=1,… ,44, n=1,… ,N(t).
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decline in land value as excess land increases is not monotonic. The building-height 
land parameter μ = 0.0602 is no longer as large as it was in Model 5, but an extra 
story of building height still adds 6 percent to the land value of the structure, which 
is a significant premium for extra building stories. The parameter for the walking 
distance to the nearest subway station, η = −0.00023, seems small, but it tells us 
that if  the property is 1,000 m away from the nearest station, then the land value of 
the property is expected to fall by 23 percent compared to a nearby property. The 
parameter for the travel time to Tokyo Central Station, θ = 0.0209, has a counter-
intuitive sign; it is possible that this variable is correlated with other characteristics 
determining land prices and hence is not reliably determined. The height parame-
ters, �3 = 1 and �4 −�10, are very significant determinants of structure value; the 
value of the structure increases almost monotonically as the number of stories 
increases. Finally, the decade-by-decade estimated geometric depreciation rates, �1 
−�5, show much the same pattern as was shown by the results for the previous 
model. Overall, the results of Model 9 seem to be reasonable.

In the following section, we will see if  changing the model of depreciation from 
one based on multiple geometric depreciation rates to a piecewise linear model of 
depreciation leads to a significant change in our estimated land price index.

5. T he Builder’s Model with Piecewise Linear Depreciation Rates

Thus far, we have assumed that geometric depreciation models can best 
describe our data. In this section, we check the robustness of our results by assum-
ing alternative depreciation models.

Recall that the structure aging (or survival) function for Model 9, gA(Atn), 
was defined by equation (20). In this section, we switch from a geometric model of 
depreciation to a straight-line or linear depreciation model. Thus for Model 10, we 
defined the aging function as follows: 

where δ is the straight-line depreciation rate. Our new non-linear regression 
model is the same as the previous model defined by equation (22), except that 
the function gA is defined by equation (23). The starting parameter values were 
taken to be the final parameter values from Model 7, except that the initial δ 
was set equal to 0.01 and the initial values for the parameters η and θ were set 
equal to 0.

The final LL for Model 10 was −12,635.83 and the R2 value was 0.7078. The 
estimated straight-line depreciation rate was δ  =  0.01357  (0.00127). This model 
generated reasonable parameter estimates and the imputed value of the structure 
component of the property value was positive for all observation.27

The straight-line model of depreciation is not very flexible. Thus, following the 
approach used by Diewert and Shimizu (2015b), we implement a piecewise linear 

(23) gA(Atn) ≡ (1−�Atn),

27This does not always happen for straight-line depreciation models; that is, for properties with 
very old structures, the imputed value of the structure can become negative if  the estimated deprecia-
tion rate is large enough. This phenomenon cannot occur with geometric depreciation models, which is 
an advantage of assuming this form of depreciation.
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depreciation model. Recall the definitions given in equation (19), which defined the 
five age dummy variables, DA, tni, for i = 1, …, 5. We use these age dummy variables 
to define the piecewise linear aging function, gA(Atn), as follows: 

The Model 11 non-linear regression model is the same as the model defined 
by equation (22), except that the function gA is defined by equation (24). The start-
ing parameter values were taken to be the final parameter values from Model 10, 
except that the new depreciation parameters �1, … , �5 were all set equal to the final 
straight-line depreciation rate δ estimated in Model 10. If  all 5 �i are set equal to a 
common δ, then Model 11 collapses down to Model 10.

The final LL for Model 11 was −12,614.35, which was an increase in LL of 21.48 
over the Model 10 LL. The R2 value for Model 11 was 0.7143.28 The estimated piece-
wise linear depreciation rates (with standard errors in brackets) were as follows: 
�1 = 0.0393 (0.0057), �2 = 0.0125 (0.0049), �3 = 0.0302 (0.0041),29 �4 = 0.0159 (0.0054),  
and �5 = −0.0135 (0.0074). Thus, as was the case with the multiple geometric depreci-
ation rate model, properties with structures that are over 40 years old tend to increase 
in value by 1.35 percent per year. All of the estimated parameter coefficients for Model 
11 and their t-statistics are listed in Table 4.

Comparing the estimated coefficients in Tables 3 and 4, it can be seen that 
the parameter estimates for Models 9 and 11 were very similar, except that there 
were some differences in the estimated depreciation rates �1 to �5. However, in the 
following section, we will show that these two models based on multiple depre-
ciation rates generate aging functions gA that approximate each other reason-
ably well. Thus both models describe the underlying data to the same degree of 
approximation.

6.  Comparing Alternative Models of Depreciation

The determination of depreciation schedules for commercial office build-
ings is important for tax purposes, for investors, and for the estimation of com-
mercial office structure stocks, which in turn feed into the computation of the 
Multifactor Productivity of the Commercial Office Sector. Thus, in this section, 
we compare the single geometric rate (Model 7), straight-line (Model 10), multiple 
geometric rate (Model 8), and piecewise linear (Model 11) depreciation schedules. 

(24)

gA(Atn)≡DA,tn1(1−�1Atn)+DA,tn2(1−10�1−�2(Atn−10))

+DA,tn3(1−10�1−10�2−�3(Atn−20))

+DA,tn4(1−10�1−10�2−10�3−�4(Atn−30))

+DA,tn5(1−10�1−10�2−10�3−10�4−�5(Atn−40)).

28Recall that the LL for the comparable geometric model of depreciation, Model 9, was −12,614.70 
and the R2 value for Model 9 was 0.7142. Thus the descriptive power of both models is virtually 
identical.

29Recall that these depreciation rates are net depreciation rates. As surviving structures approach 
their middle age, renovations become important and thus a decline in the net depreciation rate is plau-
sible. The pattern of depreciation rates is again similar to the comparable geometric depreciation rates 
that were observed for detached houses in Richmond (a suburb of Vancouver, Canada) by Diewert 
et al. (2017).
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These depreciation schedules are equal to the aging functions gA(A) defined by 
gG(A) ≡ (1−�)A, gSL(A) ≡ (1−�A), gMG(A), where gMG is equal to gA defined by 
equation (20), and gPL(A), where gPL is the gA defined by equation (24) and the age 
variable A = 0,1,2,…,54. The resulting depreciation schedules are listed in Table 5 
and plotted in Figure 1.

The straight-line depreciation schedule is represented by the aging function 
gSL(A); it is the straight line in Figure 1. The depreciation schedule for the geomet-
ric model of depreciation is represented by the convex curved line in Figure 1. It 
can be seen that these single-rate depreciation schedules are rather different. The 
multiple geometric rate depreciation schedule is the lower of the two broken lines 
in Figure 1, while the piecewise linear depreciation schedule is the slightly higher 
broken line. It can be seen that these two multiple depreciation rate schedules 
approximate each other fairly well.30 It can also be seen that the single geometric 
rate depreciation schedule provides a rough approximation to the two multiple rate 
schedules up to age 40, but then the schedules diverge.

The sequence of parameters �t for t  =  2,3,…,44 (along with �1 ≡ 1) listed 
in Tables 3 and 4 provides alternative land-price indexes generated by the MLIT 
transaction data. It can be seen that these alternative indexes are virtually identical 

30This is to be expected. As the number of separate depreciation rates in each of these models tends 
to 43, the two schedules will converge to a common schedule.

TABLE 5  
The Geometric, Straight-Line, Multiple Geometric, and Piecewise Linear Aging Functions

A gG (A) gSL(A) gMG (A) gPL(A) A gG (A) gSL(A) gMG (A) gPL(A)

0 1.0000 1.0000 1.0000 1.0000 28 0.3782 0.6200 0.4695 0.4942
1 0.9659 0.9864 0.9516 0.9607 29 0.3653 0.6064 0.4667 0.4912
2 0.9329 0.9729 0.9055 0.9214 30 0.3528 0.5928 0.4485 0.4753
3 0.9011 0.9593 0.8617 0.8821 31 0.3408 0.5793 0.4311 0.4594
4 0.8703 0.9457 0.8200 0.8427 32 0.3291 0.5657 0.4143 0.4435
5 0.8406 0.9321 0.7803 0.8034 33 0.3179 0.5521 0.3982 0.4276
6 0.8119 0.9186 0.7425 0.7641 34 0.3071 0.5386 0.3827 0.4117
7 0.7842 0.9050 0.7066 0.7248 35 0.2966 0.5250 0.3678 0.3958
8 0.7574 0.8914 0.6724 0.6855 36 0.2865 0.5114 0.3535 0.3799
9 0.7316 0.8779 0.6398 0.6461 37 0.2767 0.4978 0.3397 0.3640
10 0.7066 0.8643 0.6237 0.6337 38 0.2672 0.4843 0.3265 0.3481
11 0.6825 0.8507 0.6080 0.6212 39 0.2581 0.4707 0.3138 0.3323
12 0.6592 0.8371 0.5927 0.6087 40 0.2493 0.4571 0.3236 0.3457
13 0.6367 0.8236 0.5777 0.5962 41 0.2408 0.4436 0.3336 0.3592
14 0.6150 0.8100 0.5632 0.5838 42 0.2326 0.4300 0.3441 0.3727
15 0.5940 0.7964 0.5490 0.5713 43 0.2246 0.4164 0.3548 0.3862
16 0.5737 0.7829 0.5352 0.5588 44 0.2170 0.4028 0.3659 0.3997
17 0.5541 0.7693 0.5217 0.5463 45 0.2096 0.3893 0.3773 0.4132
18 0.5352 0.7557 0.5085 0.5339 46 0.2024 0.3757 0.3890 0.4266
19 0.5170 0.7421 0.4957 0.5214 47 0.1955 0.3621 0.4012 0.4401
20 0.4993 0.7286 0.4927 0.5184 48 0.1888 0.3485 0.4137 0.4536
21 0.4823 0.7150 0.4898 0.5153 49 0.1824 0.3350 0.4266 0.4671
22 0.4658 0.7014 0.4868 0.5123 50 0.1762 0.3214 0.4399 0.4806
23 0.4499 0.6878 0.4839 0.5093 51 0.1702 0.3078 0.4536 0.4941
24 0.4346 0.6743 0.4810 0.5063 52 0.1643 0.2943 0.4678 0.5076
25 0.4197 0.6607 0.4781 0.5032 53 0.1587 0.2807 0.4824 0.5210
26 0.4054 0.6471 0.4752 0.5002 54 0.1533 0.2671 0.4974 0.5345
27 0.3916 0.6336 0.4723 0.4972
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(they cannot be distinguished on a chart) and hence only one of these alternative 
models of depreciation needs to be considered in what follows. Since the log like-
lihood of the piecewise linear depreciation model (Model 11) was slightly higher 
than the multiple geometric depreciation rate model (Model 10), we will use the 
�t sequence generated by Model 11 as our MLIT land-price series in subsequent 
sections. We will label this series for quarter t as PLt

MLIT
.

7.  Smoothing the MLIT Land-Price Series

In Figure 2, it can be seen that our Model 11 estimated land price series, 
PLt

MLIT
≡ �t, is somewhat volatile. This is due to the fact that commercial proper-

ties are very heterogeneous and we have relatively few transactions per quarter. 
Thus the raw series PLMLIT does not accurately represent the trend in commercial 
land prices in Tokyo; the raw series requires some smoothing in order to model the 
trends in land prices.31 Patrick (2017) found the same problem for Irish house price 
sales and we will follow his example and smooth the raw series.32

We used the LOWESS non-parametric smoother in Shazam in order to con-
struct a preliminary smoothed land-price series, PLS, using PLMLIT as the input 
series.33 We used the cross-validation criterion to choose the smoothing parameter, 

31The volatility in our raw series could be a real phenomenon in that land prices are inherently 
volatile. If  this is the case, it would be useful for statistical offices to publish the unsmoothed series as 
well as the smoothed series. As noted by Geltner et al. (2014), property investors would find unsmoothed 
property price indexes useful in order to evaluate the riskiness of property investments.

32Patrick initially smoothed his series by taking a 3-month rolling average of the raw index prices 
for Ireland. He found that the resulting index was still too volatile to publish and he ended up using a 
double-exponential smoothing procedure.

33The initial smoothed series was divided by the quarter 1 value so that the resulting normalized 
series equalled 1 in quarter 1. Recall that quarter 1 is the first quarter in 2005 and quarter 44 is the last 
quarter in 2015.

Figure 1.  Alternative Aging Functions 
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which turned out to be f = 0.12. The series PLMLIT and PLS are listed in Table 6  
and plotted in Figure 2.

The jagged black line in Figure 2 represents the unsmoothed land price index 
PLMLIT that we estimated from Model 11, while the lowest line represents the 
LOWESS non-parametric smoothed series PLS that was generated using Shazam. 
It can be seen that while PLS is reasonably smooth, it is not quite centered; that is, it 
is consistently below the raw series. Thus we considered some alternative methods 
for smoothing the raw series.

Henderson (1916) was the first to realize that various moving-average smooth-
ers could be related to rolling-window least squares regressions that would exactly 
reproduce a polynomial curve. Thus we apply his idea to derive the moving-aver-
age weights that would be equivalent to fitting a linear function to five consecu-
tive quarters of a time series, which we represent by the vector YT

≡ [y1,… ,y5],  
where YT denotes the transpose of a vector Y. Define the five-dimensional col-
umn vectors X1 and X2 as X1 ≡ [1,1,1,1,1]T and X2 ≡ [−2,−1.0,1,2]T. Define 
the (5  ×  2)-dimensional X matrix as X ≡ [X1,X2]. Denote the linear smooth of 
the vector Y by Y∗. Then least squares theory tells us that Y∗ = X(XT

X)−1XT
Y .  

Thus the five rows of the 5 × 5 projection matrix X(XT
X)−1XT give us the weights 

that can be used to convert the raw Y series into the smoothed Y∗ series. For our 
particular example, the five rows of the projection matrix are as follows: row 
one  =  (1/10)[6,  4,  2,  0, −2]; row two  =  (1/10)[4,  3,  2,  1,  0]; row three  =  (1/5)
[1, 1, 1, 1, 1]; row four  = (1/10)[0, 1, 2, 3, 4]; row five  = (1/10)[−2, 0, 2, 4, 6]. Note 
that row three tells us that the third component of the smoothed vector Y∗ is equal 
to y∗

3
= (1∕5)(y1 + y2 + y3 + y4 + y5). a simple equally weighted moving average 

of the raw data for five periods. Thus the way in which this smoothing method 
could be applied in practice to 44 consecutive quarters of PLMLIT data is as fol-
lows. The first three components of the smoothed series would use the inner prod-
ucts of the first three rows of the projection matrix X(XT

X)−1XT times the first 

Figure 2.  The MLIT Land Prices, the LOWESS Smoothed Prices, and the Linear and Quadratic 
Smoothed Prices 
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five components of the PLMLIT series. This would generate the first three com-
ponents of the smoothed series PLt

L
, for t = 1, 2, 3. For t = 3, 4, …, 42, define 

PLt
L
≡ (1∕5)[PLt−2

MLIT
+ PLt−1

MLIT
+ PLt

MLIT
+ PLt+1

MLIT
+ PLt+2

MLIT
]. Thus for all 

observations t except for the first two and last two, the smoothed series PLt would 
be defined as the simple centered moving average of five consecutive PLMLIT obser-
vations with equal weights. The final two observations would be defined as the 
inner products of rows four and five of X(XT

X)−1XT with the last five observations 

TABLE 6  
The MLIT Land Prices, PL

MLIT
, the LOWESS Smoothed Land Prices, PL

S
, and the Linear and 

Quadratic Smoothed Land Prices, PL
L
 and PL

Q

Quarter PL
MLIT

PL
S

PL
L

PL
Q

1 1.00000 1.00000 1.00000 1.00000

2 1.55293 1.22256 1.31711 1.31711
3 1.63422 1.41343 1.42867 1.64505
4 1.53523 1.36721 1.58159 1.50881
5 1.42096 1.38616 1.70218 1.49669
6 1.76462 1.58816 1.72654 1.80134
7 2.15588 1.72313 1.87309 1.93802
8 1.75601 1.80146 2.11368 1.99351
9 2.26798 1.98565 2.25488 2.20673
10 2.62393 2.21322 2.30843 2.54089
11 2.47061 2.23370 2.45153 2.52436
12 2.42362 2.18881 2.34178 2.49936
13 2.47153 2.00272 2.15709 2.26334
14 1.71923 1.72301 2.07466 1.88127
15 1.70045 1.61503 1.88313 1.78365
16 2.05848 1.59538 1.56540 1.86242
17 1.46597 1.31167 1.35840 1.51611
18 0.88287 0.88680 1.25719 0.88721
19 0.68422 0.79234 1.04127 0.83499
20 1.19442 0.88117 0.98237 0.97427
21 0.97889 0.97860 1.05818 1.11980
22 1.17144 1.02013 1.10914 1.15441
23 1.26194 1.02133 1.02848 1.18481
24 0.93901 0.88339 1.00673 0.98500
25 0.79111 0.76458 1.01445 0.79266
26 0.87016 0.84384 1.01155 0.92135
27 1.21003 1.00334 1.08928 1.13215
28 1.24743 1.12503 1.13287 1.31487
29 1.32764 1.08376 1.18341 1.21856
30 1.00910 1.01178 1.25811 1.08766
31 1.12286 1.09153 1.24647 1.21854
32 1.58349 1.19563 1.27629 1.34877
33 1.18925 1.23645 1.35573 1.41007
34 1.47675 1.22737 1.44159 1.33842
35 1.40632 1.31129 1.46396 1.47429
36 1.55214 1.38556 1.50250 1.57230
37 1.69536 1.39737 1.54949 1.56217
38 1.38194 1.39867 1.66709 1.53537
39 1.71167 1.51667 1.63026 1.72640
40 1.99436 1.54872 1.61806 1.76603
41 1.36798 1.45003 1.64401 1.63230
42 1.63437 1.36017 1.71076 1.43488
43 1.51167 1.54133 1.73534 1.59740
44 2.04541 1.73013 1.75991 2.03579
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in the PLMLIT series. In practice, as the data of a subsequent period became avail-
able, the last two observations in the existing series would be revised—but after 
receiving the data of two subsequent periods, there would be no further revisions; 
that is, the final smoothed value of an observation would be set equal to the cen-
tered five-period moving average of the raw data.

We implemented the above procedure but the above algorithm does not 
ensure that the value of  the smoothed series in the first quarter of  the sample is 
equal to 1 and so the generated series had to be divided by a constant to ensure 
that the first observation in the smoothed series was equal to unity. We found 
that this division caused the smoothed series to lie below the raw series for the 
most part.34 Patrick 2017, pp. 25–6) found that a similar problem occurred with 
his initial simple moving-average smoothing method. He solved the problem by 
setting the smoothed values equal to the actual values for the first two observa-
tions when he applied his second smoothing method. We solved the centering 
problem in a similar manner: we set the initial value of  the smooth equal to the 
corresponding raw number (so that PL1

L
≡ PL1

MLIT
) and we set the second value 

of  the smooth equal to the average of  the first and third observations in the raw 
series (so that PL2

L
≡ (1∕2)[PL1

MLIT
+PL3

MLIT
]. For the quarter 3 value of  the 

smooth, we used the simple five-term centered moving average so that 
PL3

L
≡ (1∕5)[PL1

MLIT
+ PL2

MLIT
+ PL3

MLIT
+ PL4

MLIT
+ PL5

MLIT
] and we carried 

on using this moving average until quarters 43 and 44, where we used rows four 
and five of  the matrix X(XT

X)−1XT defined above for our moving-average 
weights. The resulting smoothed series PLt

L
 is listed in Table 6 and plotted in 

Figure 2. It can be seen that it does a good job of  smoothing the initial PLt
MLIT

 
series.

We also applied the same least squares methodology to a rolling-window five-
term quadratic regression model. Define the five-dimensional column vectors X1 
and X2 as before and define X3 ≡ [4, 1, 0, 1, 4]T. Define the (5 × 3)-dimensional X 
matrix as X ≡ [X1,X2,X3]. Denote the quadratic smooth of the vector Y by Y∗∗. 
Again, least squares theory tells us that Y∗∗ = X(XT

X)−1XT
Y . The five rows of the 

new 5×5 projection matrix X(XT
X)−1XT give us the weights that can be used to 

convert the raw Y series into the smoothed Y∗∗ series. The five rows of the new 
projection matrix are as follows: row one  = (1/35)[31, 9, −3, −5,3]; row two  = (1/35)
[9,  13,  12,  6,  −5]; row three   =  (1/35)[−3,  12,  17,  12,  −3]; row four   =  (1/35)
[−5, 6, 12, 13, 9]; and row five  = (1/35)[3, −5, −3, 9, 31]. Now repeat the steps that 
were used to construct the linear smooth PLt

L
 to construct a preliminary quadratic 

smooth PLt
Q

, except that the new 5 × 5 projection matrix X(XT
X)−1XT replaces the 

previous one. A final PLt
Q

 series was constructed by replacing the first two values 

in the smoothed series by the same initial two values that we used to construct the 
final versions of PL1

L
 and PL2

L
. The resulting smoothed series PLt

Q
 is listed in 

Table 6 and plotted in Figure 2. It can be seen that PLt
Q

 is not nearly as smooth as 

the linear smoothed series PLt
L
 but, of course, it is a lot closer to the unadjusted 

34A similar problem of a lack of centering occurred when we implemented the LOWESS smooth-
ing procedure; that is, we had to divide by a constant to make the first component of the smoothed  
series equal to one. As a result, the LOWESS smoothing tended to lie below the raw series, as can be 
seen in Figure 2.
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series PLt
MLIT

. For our particular dataset, we would recommend the linear smoother 
over the quadratic smoother.35

We now turn to the construction of land prices using commercial property 
appraisal data.

8. T he Builder’s Model Using Property Appraisal Data

As was indicated in Section 2, we have quarterly appraisal data for 41 com-
mercial office REIT office buildings located in Tokyo for the 44 quarters starting 
at Q1:2005 and ending at Q4:2015, which, of course, is the same period that was 
covered by the MLIT selling-price data. We will implement the builder’s model for 
this dataset in this section.

The builder’s model using appraisal data is somewhat different from the build-
er’s model using selling-price data. The panel nature of the REIT data means that 
we can use a single property-specific dummy variable as a variable that concen-
trates all of the location attributes of the property into a single variable; that is, we 
do not have to worry about how close to a subway line the property is, or how many 
stories the building has, or how much excess land is associated with the property. 
The single property-specific dummy variable will take all of these characteristics 
into account.

There are 41 separate properties in our REIT dataset. For each of our 44 
quarters, we assume that the 41 properties appear in the appraised property value 
for property n in period t, Vtn, in the same order. Our initial regression model is 
the following one, where the variables have the same definitions as in equation (2) 
except that �n is now the property n sample average land price (per square meter) 
rather than a ward-n relative price of land: 

Thus, in Model 1 above, there are no quarter-t land-price parameters in this 
very simple model with 41 unknown property average land-price �n parameters to 
estimate. Note that the geometric (net) depreciation rate in the model defined by 
equation (25) was assumed to be 2.5 percent per year.

The final LL for this model was −14,968.77 and the R2 value was 0.9426. Thus 
the 41 property average price parameters �n explain a large part of the variation 
in the data.

In Model 2, we introduce quarterly land prices �t into the above model. The 
new non-linear regression model is as follows: 

35A quadratic Henderson-type smoother would be much smoother if  we lengthened the window. 
But a longer window would imply a longer revision period before the series would be finalized. Since the 
linear smoother with window length 5 seems to do a nice job of smoothing, we would not recommend 
moving to a longer window length for this particular application.

(25) Vtn=

41
∑

n=1

�nLtn+pSt(1−0.025)A(t,n)Stn+�tn; t=1,… ,44, n=1,… ,41.

(26) Vtn=

41
∑

n=1

�t�nLtn+pSt(1−0.025)A(t,n)Stn+�tn; t=1,… ,44, n=1,… ,41.



Review of Income and Wealth, Series 66, Number 4, December 2020

808

© 2019 International Association for Research in Income and Wealth

Not all of the quarterly land-price parameters (the �t) and the average prop-
erty price parameters (the �n) can be identified. Thus we impose the following 
normalization on our coefficients: 

We used the final parameter values for the �n from Model 1 as starting coeffi-
cient values for Model 2 (with all �t initially set equal to 1).36 The final LL for Model 
2 was −13,999.00, a huge improvement of 969.77 for adding 43 new parameters. The 
R2 value was 0.9804. Thus the 41 property average price parameters �n and the 43 
quarterly average land-price parameters �t explain most of the variation in the data.

Model 3 is the following non-linear regression model: 

where δ is the annual geometric (net) depreciation rate. The normalization given in 
equation (27) is also imposed. Thus Model 3 is the same as Model 2 except that we 
now estimate the single geometric depreciation rate δ.

We used the final parameter values for the �t and �n from Model 2 as starting 
coefficient values for Model 3 (with δ initially set equal to 0.025). The final LL for 
this model was −13,993.47, an increase of 5.53 for one additional parameter, and 
the R2 value was 0.9806. The estimated geometric (net) depreciation rate was 
δ = 0.01353.37 The estimated coefficients and their t-statistics are listed in Table 7. 
Recall that �1 was set equal to 1. The sequence of land price (per square meter) �t, 
for t = 1,2,…,44, is our estimated sequence of quarterly Tokyo land prices, PLt

REIT
,  

which appears in Figure 3.
Note that the implied standard errors on the quarterly land-price coefficients, 

the �t, are fairly large, whereas they are fairly small for the property coefficients, the 
�n. This means that our estimated land-price indexes, PLt

REIT
= �t, are not reliably 

determined. Note also that our estimated geometric depreciation rate δ is only  
1.35 percent per year, which is much lower than our estimated depreciation rate 
from Model 7 in Section 3, which was 3.41 percent per year. One factor that may 
help to explain this divergence in estimates of wear-and-tear depreciation is that 
appraisers take into account capital expenditure on the properties. However, our 
current database did not contain information on capital expenditure and it is likely 
that not having capital expenditure as an explanatory factor affected our estimates 
for the depreciation rate. In our previous study of land prices using REIT data for 
Diewert and Shimizu (2017), we adjusted our non-linear regressions for capital 
expenditure and found that the resulting estimated quarterly wear-and-tear 

(27) �1=1.

36The reader may well wonder why we estimated the �n in Model 1 rather than first estimating the 
�t in Model 1. When this alternative strategy was implemented, we found that the resulting Model 2 did 
not converge to the “right” parameter values; that is, the resulting R2 value was very low. This is the 
reason for following our nested estimation methodology, in which each successive model uses the final 
coefficient values from the previous model. It is not possible to simply estimate our final models in one 
step and obtain sensible results.

(28) Vtn=�t�nLtn+pSt(1−�)A(t,n)Stn+�tn; t=1,… ,44, n=1,… ,41

37We also estimated the straight-line depreciation model counterpart to Model 3. The resulting 
estimated straight-line depreciation rate δ was equal to 0.01317 (t-statistic  = 45.73). The R2 value for 
this model was 0.9806 and the final LL was −13,989.83. The resulting land-price series was very similar 
to the one generated by Model 3.
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geometric depreciation rate was 0.005, which implied an annual (single) geometric 
depreciation rate of about 2 percent.38

In the following section, we will estimate our final land-price series for Tokyo 
commercial office buildings using official estimates for the land values of commer-
cial properties for taxation purposes.

9.  Estimating Land Prices for Commercial Properties Using Tax Assessment 
Data

In this section, we will use the OLP data described in Section 2. We have 6,242 
annual assessed values for the land components of commercial properties in Tokyo 
covering the 11 years from 2005 to 2015. We will label these years as t = 1, 2, …, 11. 
The assessed land value for property n in year t is denoted as Vtn.

39 We have infor-
mation on which ward each property is located in and the ward dummy variables 
DW , tnj are defined by the definitions given in equation (4). The land-plot area of 
property n in year t is denoted by Ltn and the subway variables DStn and TTtn are 
defined as in Section 2. The number of observations in year t is N(t).

38In the multiple geometric depreciation rate model estimated by Diewert and Shimizu (2017), the 
various rates averaged out to an annual rate of 2.6 percent per year. Our earlier study covered the 22 
quarters starting at Q1:2007 and ending at Q2:2012. The correlation coefficient between the price of 
land series in this model in Diewert and Shimizu (2017) and the above Model 3 price of land series for 
the overlapping 22 quarters is 0.9901, so these two studies using REIT appraisal data show much the 
same trends in Tokyo commercial property land prices even though the estimated wear-and-tear depre-
ciation rates are different. Note that in addition to wear-and-tear depreciation, depreciation due to the 
early demolition of a structure before it reaches “normal” retirement age should be taken into account. 
Our current study does not estimate this extra component of depreciation. However, Diewert and 
Shimizu (2017) estimated demolition depreciation for Tokyo commercial office buildings at 1.2 percent 
per year.

39The units of measurement used in this section are 100,000 yen.

Figure 3.  The Alternative Land-Price Series and the Price of Structures [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Our initial regression model is the following one, in which we regress the prop-
erty land value on the ward dummy variables times the land-plot area:

Thus, in Model 1 above, there are no year-t land-price parameters in this very 
simple model and �j is an estimate of the average land price (per square meter) in 
ward j for j = 1,…,23. The final LL for this model was −67073.91 and the R2 value 
was 0.3647.

In Model 2, we introduce annual land prices �t into the above model. The new 
non-linear regression model is as follows: 

Not all of the 11 annual land-price parameters (the �t) and the 23 ward aver-
age property relative price parameters (the �n) can be identified. Thus we impose 
the normalization �1 = 1.

We used the final parameter values for the �n from Model 1 as starting coeffi-
cient values for Model 2 (with all �t initially set equal to 1). The final LL for Model 
2 was −67,022.90, an increase of 51.01 for adding 43 new parameters. The R2 value 
was 0.3748.

In our next model, we allowed the price of  land to vary as the lot size 
increased. We divided up our 6,242 observations into five groups based on their 
lot size. The Group 1 properties had lots of  less than 100 m2, the Group 2 proper-
ties had lots greater than or equal to 100 m2 and less than 150 m2, the Group 3 
properties had lots greater than or equal to 150 m2 and less than 200 m2, the 
Group 4 properties had lots greater than or equal to 200 m2 and less than 300 m2,  
and the Group 5 properties had lots greater than or equal to 300 m2.40 For each 
observation n in period t, we define the five land dummy variables, DL, tnk, for 
k = 1,…,5 as follows: 

Define the constants L1–L4 as 100, 150, 200, and 300, respectively. These con-
stants and the dummy variables defined by equation (31) are used in the definition 
of the following piecewise linear function of Ltn, f (Ltn):

(29) Vtn=

(

23
∑

j=1

�jDW ,tnj

)

Ltn+�tn; t=1,… ,11, n=1,… ,N(t).

(30) Vtn=�t

(

23
∑

j=1

�jDW ,tnj

)

Ltn+�tn; t=1,… ,11, n=1,… ,N(t).

40The sample probabilities of an observation falling in the five land size groups were as follows: 
0.171, 0.285, 0.175, 0.178, and 0.191.

(31) DL,tnk ≡

1 if observation tn has a land area that belongs to Group k;

0 if observation tn has a land area that does not belong to Group k.

(32)

f (Ltn) ≡ DL,tn1�1Ltn+DL,tn2[�1L1
+�

2
(Ltn−L1

)]

+DL,tn3[�1L1
+�

2
(L

2
−L

1
)+�

3
(Ltn−L2

)]

+DL,tn4[�1L1
+�

2
(L

2
−L

1
)+�

3
(L

3
−L

2
)+�

4
(Ltn−L3

)]

+DL,tn5[�1L1
+�

2
(L

2
−L

1
)+�

3
(L

3
−L

2
)+�

4
(L

4
−L

3
)+�

5
(Ltn−L4

)].
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 Model 3 was defined as the following non-linear regression model: 

We imposed the normalizations �1 = 1 and �1 = 1 so that all of the remaining 
parameters in equation (33) could be identified. These normalizations were also 
imposed in Model 4 below.

We used the final parameter values for the �t and �j from Model 2 as starting 
coefficient values for Model 3 (with all �k initially set equal to 1). Thus Model 3 
adds the four new marginal prices of land, �2, �3, �4, and �5, to Model 2. The final 
LL for Model 3 was −66,044.02, an increase of 978.88 for adding four new param-
eters. The R2 value was 0.4668.

Our final land-price model added the subway variables to Model 3. Thus 
Model 4 was defined as the following non-linear regression model41: 

Thus Model 4 has added two new subway parameters, η and θ, to Model 3. 
We used the final parameter values for the �t,�j and �k from Model 3 as starting 
coefficient values for Model 4 (with η and θ initially set equal to 0). The final log 
likelihood for Model 4 was −65,584.56, an increase of 459.46 for adding two new 
parameters. The R2 value was 0.5401. The estimated coefficients for this model 
are listed in Table 8. The �t sequence of estimated parameters (along with �1 ≡ 1)  
forms an annual (quality-adjusted) OLP series. For comparison purposes, we 
repeat each �t four times and convert the annual OLP series into the quarterly 
OLP series, PLt

OLP
. It will be listed and compared with our final transactions-based 

MLIT land-price series PLt
MLIT

 and its linear smooth PLt
L
 along with our final 

REIT-based land-price series PLt
REIT

 in the following section.
It can be seen that the standard errors on the estimated annual land prices 

�t are fairly small; recall that they were fairly large for the REIT-based quarterly 
land-price series, PLt

REIT
. Except for �3, it can be seen that the �k decrease mono-

tonically as k increases; this indicates that the marginal price of land decreases as 
the land-plot size increases. The two estimated subway parameters, η and θ, both 
have the expected negative sign and are reasonable in magnitude. Since we do not 
have additional information on the height or size of the buildings, we cannot add 
more explanatory variables to the Model 4 regression.

10.  Comparing Land-Price Indexes from Different Sources

Table 6 lists the land-price series based on MLIT transactions PLt
MLIT

 and its 
linear smooth, PLt

L
. Table 7 lists the REIT-based land-price series PLt

REIT
 and the 

(33) Vtn=�t

(

23
∑

j=1

�jDW ,tnj

)

f (Ltn)+�tn; t=1,… ,11, n=1,… ,N(t).

41The minimum value for the distance to the nearest subway station DStn was 50 m and the mini-
mum value for the subway running time from the nearest station to the central Tokyo subway station 
was 4 minutes.

(34)
Vtn= �t

(

23
∑

j=1

�jDW ,tnj

)

(

1+�(DStn−50)
) (

1+�(TTtn−4)
)

f (Ltn)+�tn;

t=1,… ,11, n=1,… ,N(t).
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OLP series PLt
OLP

 can be constructed using the estimated �t listed in Table 8. These 
four series, along with the official construction price series PSt, are listed in Table 9 
and plotted in Figure 3.

It can be seen that the land-price series based on transactions data, PLt
MLIT

, 
and its linear smooth, PLt

L
, paint a very different picture of land-price movements 

as compared to the series based on appraisal values for commercial land in Tokyo, 
PLt

REIT
, and the series based on property tax assessed values, PLt

OLP
. As was noted 

in Section 1, appraisal prices tend to lag behind the movements in transaction prices 
and they also smooth the sales data. The same phenomenon evidently applies to 
assessed value prices. Figure 3 shows that the price indexes for commercial land 
based on appraisal and assessed values fluctuate far less than the index-based 
actual transactions prices. However, it can be seen that the appraisal and assessed 
value series do tend to move in the same direction as the transactions prices, but 
with a lag. The figure also shows the problem with the transactions-based series: its 
quarter-to-quarter fluctuations are massive. But it also can be seen that the linear 
smoothed series PLt

L
 (which is essentially a centered five-quarter moving average 

of the unsmoothed series PLt
MLIT

) captures the trend in transactions prices quite 
well. This series can be finalized after a two-quarter delay. Our preferred land price 
series is the linear smoothed transaction series PLt

L
.

In the following section, we will use the MLIT and REIT data to construct 
alternative commercial property price indexes; that is, we will aggregate the land- 
and structure-price data into overall property price indexes and compare these 
indexes with other indexes that are simpler to construct.

11. A  Comparison of Alternative Commercial Property Price Indexes

Recall that in Section 3, the MLIT value of property n in quarter t was defined 
as Vtn in period t and the corresponding property land and structure areas were 
defined as Stn and Ltn for n = 1, …, N(t) and t = 1, …, 44. In the property price 
literature, a frequently used index of overall property prices is the period average 
of the individual property values Vtn divided by the corresponding structure area 
Stn. Thus define the (preliminary) quarter t mean property price Pt

MEANP
 as follows: 

The final mean property price index for quarter t, Pt
MEAN

, is defined as the 
corresponding preliminary index Pt

MEANP
 divided by P1

MEANP
; that is, we normalize 

the series defined by equation (35) to equal 1 in quarter 1.
As could be expected, the mean property price series Pt

MEAN
 is rather volatile and 

so in order to capture the trends in Tokyo commercial property prices, it is necessary to 
smooth this series. We used the same linear smoothing procedure that was explained 
in Section 7 to construct the smoothed land-price series PLt

L
. Thus we set the initial 

value of the smoothed mean series, P1
MEANS

, equal to the corresponding unsmoothed 
value P1

MEAN
. We set the quarter-2 value of the smooth equal to the average of the first 

and third observations in the raw series (so that P2
MEANS

≡ (1∕2)[P1
MEAN

+P3
MEAN

]. 

(35) Pt
MEANP

≡ (1∕N(t))

N(t)
∑

n=1

Vtn∕Stn; t=1,… ,44.
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For the quarter-3 value of the smooth, we used the simple five-term centered moving 
average so that P3

MEANS
≡ (1∕5)[P1

MEAN
+P2

MEAN
+P3

MEAN
+P4

MEAN
+P5

MEAN
] and 

we carried on using this five-term centered moving average until quarters 43 and 44, 
where we used rows four and five of the matrix X(XT

X)−1XT defined in Section 7 
for our Henderson linear regression smoother. The resulting smoothed mean price 
series, Pt

MEANS
, is listed in Table 10 and plotted in Figure 4. We note that the average 

value of the unsmoothed series Pt
MEAN

 is 1.1644, while the average value of the cor-
responding smoothed series Pt

MEANS
 is 1.1614.

TABLE 9  
The Alternative Land-Price Series and the Price of Structures

Quarter t PLt
MLIT

PLt
L

PLt
REIT

PLt
OLP

PSt

1 1.00000 1.00000 1.00000 1.00000 1.00000

2 1.55293 1.31711 1.02676 1.00000 0.99636
3 1.63422 1.42867 1.06369 1.00000 0.99211
4 1.53523 1.58159 1.10454 1.00000 0.98941
5 1.42096 1.70218 1.15004 1.07513 0.99184
6 1.76462 1.72654 1.19883 1.07513 0.99790
7 2.15588 1.87309 1.24744 1.07513 1.00351
8 1.75601 2.11368 1.29953 1.07513 1.00918
9 2.26798 2.25488 1.34499 1.16432 1.01241
10 2.62393 2.30843 1.38812 1.16432 1.01770
11 2.47061 2.45153 1.44194 1.16432 1.02208
12 2.42362 2.34178 1.49019 1.16432 1.02971
13 2.47153 2.15709 1.50818 1.33985 1.04572
14 1.71923 2.07466 1.49977 1.33985 1.09410
15 1.70045 1.88313 1.47635 1.33985 1.11708
16 2.05848 1.56540 1.44330 1.33985 1.09343
17 1.46597 1.35840 1.39905 1.25946 1.05114
18 0.88287 1.25719 1.34400 1.25946 1.02499
19 0.68422 1.04127 1.29130 1.25946 1.01141
20 1.19442 0.98237 1.24531 1.25946 0.99425
21 0.97889 1.05818 1.21368 1.18646 0.98011
22 1.17144 1.10914 1.18021 1.18646 1.00021
23 1.26194 1.02848 1.15830 1.18646 0.99197
24 0.93901 1.00673 1.14173 1.18646 0.98385
25 0.79111 1.01445 1.12141 1.14862 0.99586
26 0.87016 1.01155 1.10598 1.14862 1.00424
27 1.21003 1.08928 1.10225 1.14862 0.99826
28 1.24743 1.13287 1.09666 1.14862 0.99692
29 1.32764 1.18341 1.08618 1.13820 0.99776
30 1.00910 1.25811 1.07504 1.13820 1.00624
31 1.12286 1.24647 1.07151 1.13820 1.00058
32 1.58349 1.27629 1.06681 1.13820 1.00290
33 1.18925 1.35573 1.05778 1.11199 1.01027
34 1.47675 1.44159 1.04788 1.11199 1.02160
35 1.40632 1.46396 1.04320 1.11199 1.02960
36 1.55214 1.50250 1.03916 1.11199 1.05012
37 1.69536 1.54949 1.03814 1.09194 1.07326
38 1.38194 1.66709 1.04095 1.09194 1.08818
39 1.71167 1.63026 1.04657 1.09194 1.09886
40 1.99436 1.61806 1.05460 1.09194 1.11577
41 1.36798 1.64401 1.06887 1.11544 1.12204
42 1.63437 1.71076 1.08289 1.11544 1.12769
43 1.51167 1.73534 1.10053 1.11544 1.12651
44 2.04541 1.75991 1.12109 1.11544 1.11855
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Table 9 in the previous section lists the land-price index PLt
MLIT

 based on the 
builder’s model using the MLIT transactions data. Table 9 also lists the quarter-t 
structure price indexes, PSt. We can use the predicted values from the Model 11 
regression explained in Section 5 in order to construct the imputed value of land 
sold during quarter t. This quarter-t value of land is defined as follows: 

(36)
Vt
L
≡ �t

N(t)
∑

n=1

(

4
∑

j=1

�jDW ,tnj

)(

5
∑

m=1

�mDEL,tnm

)

(

1+�(Htn−3)
) (

1+�(DStn−0)
)

×
(

1+�(TTtn−1)
)

fL(Ltn); t=1,… ,44.

TABLE 10  
The Alternative Overall Commercial Property Price Indexes

Quarter t Pt
MEAN

Pt
MEANS

Pt
FMLIT

Pt
FMLITS

Pt
FREIT

Pt
LPHED

Pt
LPHEDS

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

2 1.18211 1.11644 1.25260 1.15058 1.01858 1.12578 1.12971
3 1.23289 1.16886 1.26945 1.18790 1.04447 1.25942 1.16157
4 1.22061 1.21225 1.21852 1.23585 1.07364 1.24404 1.20967
5 1.20868 1.24444 1.18141 1.28993 1.10761 1.17860 1.24030
6 1.21694 1.28112 1.33886 1.32389 1.14501 1.24052 1.27364
7 1.34307 1.30365 1.51703 1.40608 1.18219 1.27892 1.32785
8 1.41632 1.43708 1.33632 1.46794 1.22201 1.42612 1.42052
9 1.33326 1.43627 1.56545 1.56057 1.25638 1.51511 1.45011
10 1.87582 1.46519 1.76501 1.63832 1.28961 1.64193 1.51268
11 1.21289 1.47075 1.64041 1.63363 1.33051 1.38846 1.54175
12 1.48766 1.44451 1.64183 1.61144 1.36814 1.59179 1.49237
13 1.44413 1.34393 1.66991 1.55087 1.38555 1.57148 1.43715
14 1.20203 1.36900 1.35804 1.48591 1.39181 1.26820 1.43887
15 1.37291 1.33842 1.37911 1.45152 1.38040 1.36580 1.35784
16 1.33824 1.25163 1.52799 1.32192 1.34982 1.39708 1.27652
17 1.33477 1.18789 1.23700 1.19171 1.30617 1.18664 1.21455
18 1.01018 1.10527 0.95988 1.12128 1.25869 1.16489 1.16196
19 0.88336 1.01512 0.86424 1.02333 1.21607 0.95832 1.08358
20 0.95981 0.92967 1.08210 0.98875 1.17747 1.10288 1.05599
21 0.88749 0.90702 0.97954 1.01588 1.15025 1.00516 1.03546
22 0.90749 0.90880 1.07696 1.04978 1.13033 1.04872 1.04410
23 0.89697 0.88131 1.11188 1.00911 1.11178 1.06220 1.02744
24 0.89223 0.88767 0.96497 0.99329 1.09728 1.00156 1.03771
25 0.82235 0.91494 0.90797 1.00329 1.08506 1.01955 1.06638
26 0.91929 0.93288 0.94799 1.00717 1.07552 1.05652 1.06417
27 1.04386 1.01361 1.09552 1.04126 1.07103 1.19205 1.11638
28 0.98669 1.06931 1.10571 1.05758 1.06634 1.05119 1.15239
29 1.29586 1.08824 1.14663 1.08420 1.05854 1.26258 1.16835
30 1.10084 1.08174 1.00751 1.11102 1.05216 1.19961 1.15112
31 1.01394 1.10295 1.05406 1.10498 1.04790 1.13634 1.17367
32 1.01135 1.04434 1.27150 1.13668 1.04475 1.10587 1.16224
33 1.09274 1.05850 1.08869 1.15609 1.03958 1.16397 1.16253
34 1.00285 1.08167 1.21316 1.19959 1.03469 1.20540 1.18833
35 1.17163 1.13272 1.19967 1.22353 1.03293 1.20105 1.23764
36 1.12980 1.14552 1.26047 1.24145 1.03474 1.26535 1.25125
37 1.26657 1.17903 1.36487 1.30179 1.03940 1.35244 1.27450
38 1.15674 1.19541 1.22411 1.34261 1.04489 1.23201 1.30450
39 1.17042 1.20649 1.36521 1.33301 1.05141 1.32164 1.32267
40 1.25353 1.21222 1.51213 1.35536 1.06127 1.35104 1.35608
41 1.18520 1.22743 1.23270 1.34508 1.07319 1.35622 1.40102
42 1.29522 1.23749 1.35747 1.38881 1.08475 1.51951 1.44634
43 1.23277 1.23569 1.31046 1.40686 1.09736 1.45668 1.49583
44 1.22073 1.23388 1.55012 1.42906 1.11051 1.54825 1.54532
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In a similar fashion, we can use the predicted values from the Model 11 regres-
sion in order to define the imputed value of structures sold during quarter t, Vt

S
, 

as follows: 

The quality-adjusted quarter-t quantities of land and of structures, Qt
L
 and Qt

S
, 

are defined as follows: 

With the prices and quantities of land and structures defined for each quarter, 
we calculated Fisher (1922) property price indexes, which are listed as Pt

FMLIT
 in 

Table 10 and plotted in Figure 4.42

From viewing Figure 4, it can be seen that the Fisher property price indexes 
using MLIT data, Pt

FMLIT
, are quite volatile (due, of course, to the volatility of the 

MLIT land-price component indexes, Pt
LMLIT

). The Henderson linear regression 
smooth of the unsmoothed land-price series Pt

LMLIT
 was listed as PLt

L
 in Table 9. 

We use this smoothed land-price series along with the new land quantities defined 
as Qt

L
≡ Vt

L
∕PLt

L
 in order to define the smoothed Fisher property price index, 

(37) Vt
S
≡ pSt

N(t)
∑

n=1

gA(Atn)

(

10
∑

h=3

�hDH ,tnh

)

Stn; t=1,… ,44.

(38) Q
t

L
≡ V

t

L
∕PLt

MLIT
;Qt

S
≡ V

t

S
∕PSt; t=1,… ,44.

42The Laspeyres and Paasche indexes for quarter t are defined as 
P
t

L
≡ [P

t

LMLIT
Q

1

L
+PStQ

1

S
]∕[P1

LMLIT
Q

1

L
+PS1Q

1

S
] and Pt

P
≡ [P

t

LMLIT
Q
t

L
+PStQ

t

S
]∕[P1

LMLIT
Q
t

L
+PS1Q

t

S
], 

respectively. The quarter-t Fisher index is defined as Pt

FMLIT
≡ [P

t

L
P
t

P
]
1∕2, for t = 1, …, 44. For additional 

materials on these indexes, see Fisher (1922). The Fisher index has strong economic and axiomatic jus-
tifications (see Diewert, 1976, 1992). We also calculated chained Fisher property price indexes using the 
same data, but these indexes were virtually the same as the Fisher fixed-base indexes listed in Table 10.

Figure 4.  The Alternative Commercial Property Price Indexes Using MLIT and REIT Data [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Pt
FMLITS

, which is listed in Table 10 and plotted in Figure 4. This series is our pre-
ferred measure of overall commercial property prices for Tokyo.

Recall Model 3 in Section 8, which used REIT data to implement a version of 
the builder’s model. We can use the predicted values from the Model 3 regression in 
order to construct the imputed value of land sold during quarter t. This quarter-t 
value of land is defined as follows: 

In a similar fashion, we can use the predicted values from the Model 3 REIT 
regression in order to define the impute value of structures sold during quarter t, 
Vt
S
, as follows: 

The (REIT data based) quality-adjusted land price for quarter t is the �t that 
appears in equation (39) and is listed as PLt

REIT
 in Table 9. The price of structures 

is Pt
S
= pSt, where pSt is the official construction price index. The corresponding 

period-t quantities of land and structures are defined as follows: 

The overall REIT-based property price index for quarter t is defined as the 
Fisher index Pt

FREIT
, using the above prices and quantities for land and structures 

as the basic building blocks. The REIT-based overall property price series Pt
FREIT

 
is listed in Table 10 and plotted in Figure 4. It can be seen that this series is not 
volatile and does not require any smoothing.

Our final property price index will be generated by a traditional log price time 
dummy hedonic regression using the MLIT data.43

We use the same notation and definitions of variables as was used in Section 
4. Define the natural logarithms of Vtn,Ltn and Stn as LVtn,LLtn and LStn, for 
t = 1, …, 44 and n = 1, …, N(t). The log price time dummy hedonic regression 
model is the following linear regression model: 

The four combined-ward dummy variables DW ,tnj were defined by equation 
(4) and the discussion around Model 2 in Section 3. The building-height dummy 
variables, DH ,tnh, were defined just above equation (19) in Section 3. However, due 
to the small number of observations in heights equal to 10–14 stories, all buildings 
in this range were aggregated into the ten-story height category. As usual, Atn is the 

(39) Vt
L
≡

41
∑

n=1

�t�nLtn; t=1,… ,44.

(40) Vt
S
≡

41
∑

n=1

pSt(1−�)A(t,n)Stn t=1,… ,44.

(41) Qt
L
≡ Vt

L
∕PLt

REIT
; Qt

S
≡ Vt

S
∕Pt

S
; t=1,… ,44.

43Recent developments in estimating traditional log price hedonic regression property models are 
reviewed by Hill et al. (2018) and Silver (2018).

(42)
LVtn= �t+

4
∑

j=2

�jDW ,tnj+�Atn+�LLtn+�LStn+

10
∑

h=4

�hDH ,tnh

+�DStn+�TTtn+�tn; t=1,… ,44, n=1,… ,N(t).
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age of building n sold in quarter t, and DStn and TTtn are the two subway variables 
pertaining to building n in quarter t. The 44 time dummy-variable coefficients are 
�1, … , �44. Note that the dummy variable for the first combined ward, DW , tn1, is 
not included in the linear regression defined by equation (42) in order to prevent 
multicollinearity. Similarly, the dummy variable for a building height equal to 3 
was also excluded from the regression to prevent multicollinearity. There are 59 
unknown parameters in the regression. The R2 value for this regression was 0.7593. 
This is higher than our Model 9 and Model 11 R2 values using the same data, 
which were 0.7091 and 0.7143, respectively. The estimated coefficients and their 
t-statistics are listed in Table 11.

The standard errors for the time coefficients �t were fairly large (in the 0.13–
0.15 range). Define the unnormalized land price for quarter t, �t, as the exponential 
of �t; that is, �t ≡ exp (�t), for t = 1, …, 44. The log price hedonic regression prop-
erty price for quarter t, Pt

LPHED
, is defined as �t∕�1, for t = 1, …, 44. This traditional 

hedonic regression model property price index Pt
LPHED

 is listed in Table 10 and 
graphed in Figure 4.

It is interesting to note that our estimated λ and μ parameters almost sum to 
unity. Thus a generic commercial property sold in quarter t at price P with land 
and structure areas L and S, respectively, has a price that is approximately propor-
tional to the Cobb–Douglas function �tL

�S�, which has returns to scale that are 
approximately equal to one. Note also that the estimated �k follow the same pat-
tern that we saw in Sections 3–5 for land prices; that is, the composite ward 1 is the 
most expensive ward, ward 2 is the next most expensive, ward 3 is less expensive 
again, and ward 4 has the lowest level of property prices. The height dummy vari-
ables exhibit the same trends that we saw in our MLIT builder’s models: the higher 
the height of the structure, the higher is the price of the property. Finally, the 
parameter for the distance from the nearest subway station, η, is significantly neg-
ative, indicating that the property value falls as the distance increases. The subway 
travel-time parameter θ has an unexpected positive sign but is not significantly 
different from 0. Finally, it is possible to convert the estimated age coefficient γ into 
an estimate for a geometric rate of structure depreciation, δ. The formula for this 
conversion is � ≡ 1−e�∕�.44 When this conversion formula is utilized, we find that 
our estimated δ is 0.01945; that is, the traditional hedonic regression model gener-
ates an implied annual geometric depreciation rate equal to 1.945 percent per year, 
which is a reasonable estimate.

Viewing Table 10 or Figure 4, it can be seen that the time dummy hedonic 
regression model implied property price index Pt

LPHED
 is just as volatile as the 

corresponding builder’s model property price index Pt
FMLIT

. Thus we apply our 
modified Henderson linear smoothing operator to Pt

LPHED
 which produces the 

smoothed series Pt
LPHEDS

, which is also listed in Table 10 and plotted in Figure 4.
The two top jagged lines are the Fisher property price index using the builder’s 

model, Pt
FMLIT

, and the log price time dummy hedonic regression property price 
index, Pt

LPHED
. Both of these series use the MLIT sales-transaction data. Their 

linear smooths are Pt
FMLITS

 and Pt
LPHEDS

. It can be seen that these two smoothed 

44For derivations of this formula, see McMillen 2003, pp. 289–90), Shimizu et  al. (2010), and 
Diewert et al. 2017, p. 24).
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series approximate each other reasonably well.45 What is somewhat surprising is 
that the smoothed mean index Pt

MEANS
 (which uses the same transactions data) 

approximates the two smoothed hedonic indexes to some degree, but the series 
gradually diverge due to the fact that an index based on average prices per square 
meter cannot take depreciation into account.46 The hills and valleys in the Pt

MEANS
 

series are less pronounced than the corresponding fluctuations in the Pt
FMLITS

 and 
Pt
LPHEDS

 series but the turning points are the same. Finally, it can be seen that the 
Fisher property price series that is based on appraised values of properties, Pt

FREIT
, does not provide a good approximation to the two smoothed series based on 
transactions, the Pt

FMLITS
 and Pt

LPHEDS
 series. The fluctuations in Pt

FREIT
 are too 

small and the turning points in this series lag well behind our preferred series.

12.  Conclusion

Our main conclusions are as follows:

•	 It is possible to construct a quarterly transactions-based commercial 
property price index that can be decomposed into land and structure 
components.

•	 The main characteristics of the properties that are required in order to im-
plement our approach are: (i) the property location (or neighborhood); (ii) 
the floor-space area of the structure on the property; (iii) the area of the 
land plot; (iv) the age of the structure; and (v) the height of the building. 
We also require an appropriate exogenous commercial property construc-
tion cost index that gives the average cost of construction per square meter 
for each period in the sample.

•	 The land-price index that our hedonic regression model generates may be 
too volatile and hence may need to be smoothed. We found that a slightly 
modified five-quarter moving average of the raw land-price indexes did 
an adequate job of smoothing. This means that the final land-price index 
could be produced with a two-quarter lag.

•	 We found that a smoothed version of a traditional log price time dummy 
hedonic regression model produced an acceptable approximation to our 
preferred smoothed builder’s model overall price index.

•	 We also found that a very simple overall price index that is proportional to 
the quarterly arithmetic average of each property price divided by the cor-
responding structure area provided a rough approximation to our preferred 
price index. This model cannot take depreciation into account and hence 
will in general have an downward bias, but it has the advantage of requiring 
information on only a single property characteristic (the structure floor-
space area) in order to be implemented.

45Diewert (2010) noticed that the Fisher property price index generated by the builder’s model 
frequently approximated the traditional log price time dummy property price index using the same data. 
However, the key to a successful approximation is that the time dummy model must generate a reason-
able implied structure depreciation rate, which is the case for our particular dataset.

46If  the age structure of the quarterly sales of properties remains reasonably constant, then this 
neglect of depreciation will not be a factor.
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6.	 The price indexes that were based on appraisal and assessed value informa-
tion were not satisfactory approximations to the transactions-based in-
dexes. The turning points in these series lagged our preferred series and the 
appraisal-based series smoothed the data-based series to an unacceptable 
degree.47

7.	 The two versions of the builder’s model that estimated multiple (net) de-
preciation rates produced virtually the same indexes and virtually identical 
depreciation schedules. These rates of depreciation changed materially as 
the structure aged and the depreciation rates became appreciation rates for 
structures over age 40.

Our overall conclusion is that it should be possible for national income accoun-
tants to construct acceptable commercial land-price series using transactions data 
on the sales of commercial properties. The required information on the charac-
teristics of the properties is being collected by some private-sector businesses. It 
should be possible for government statisticians to collect the same information 
using building permit, land registry, and property assessment data.
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