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The empirical growth literature is dominated by accounting and regression methods that assume com-
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1. I ntroduction

“We compare this [input] index with our output index and call any 
discrepancy ‘productivity’… It is a measure of our ignorance, of the 
unknown, and of the magnitude of the task that is still ahead of us.” 
Griliches (1961, 446)

“As a careful reading of Solow (1956, 1970) makes clear, the styl-
ized facts for which this model was developed were not interpreted 
as universal properties for every country in the world. In contrast, 
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the current literature imposes very strong homogeneity assumptions 
on the cross-country growth process as each country is assumed to 
have an identical… production function.” Durlauf et al . (2001, 929)

It is an unfortunate misconception that the canonical neoclassical growth model 
simultaneously developed by Solow (1956) and Swan (1956) necessarily implies 
that all  economies in the world, rich or poor, industrialized or agrarian, possess 
the same production technology. As the above quotes show, there are prominent 
critics of this assumption, while Solow himself suggested that “whether simple 
parameterizations do justice to real differences in the way the economic mecha-
nism functions in one place or another” was certainly worth “grumbling” about 
(Solow, 1986, p. S23). Nevertheless, the notion that cross-country empirical anal-
ysis should, in the case of accounting exercises, adopt or, in the case of regression 
analysis, aim to arrive at a common  capital coefficient of around 0.3 is deeply 
ingrained in the minds of growth economists.

Any doubters of this common-technology view (cf. common long-run equilib-
rium, common convergence process, and common dynamics) are typically referred 
to a study by Gollin (2002), which provides strong evidence that the observed labor 
share of aggregate output of around 0.7 varies only little across a diverse set of 
countries once mismeasurement of labor income in less developed economies is 
accounted for. Note that Gollin (2002) does not conclude that these income shares 
are identical across countries, but that his data corrections result in considerable 
reduction in their variation and that there is no correlation between income and the 
remaining differences. Nevertheless, Gollin’s findings are typically taken to mean 
that under the reasonable assumption of constant returns to scale and the per-
haps somewhat less reasonable assumption of perfect competition, cross-country 
growth and levels accounting exercises can assume a common capital coefficient of 
0.3 and focus their energies on chipping away at other dimensions of the “measure 
of our ignorance” (see Caselli, 2005; Hulten, 2010).

In this paper, we revisit the issue of whether technology is common across 
countries.1  Using annual data for the manufacturing sector in 48 developing and 
developed countries for 1970 to 2002 (UNIDO, 2004), we show in panel time-series 
regressions that technology differences are of crucial importance for understand-
ing cross-country differences in labor productivity and their causes. Our preferred 
empirical models further emphasize the importance of time-series properties of 
output, inputs, and TFP (Bond et al ., 2010), as well as of accounting for unob-
served heterogeneity, which manifests itself  as cross-country correlations arising 
from global shocks and local spillover effects (Chudik et al ., 2011). Like the exist-
ing cross-country growth literature, our preferred empirical implementations 
address concerns over endogeneity and reverse causality. We find that once these 
empirical aspects are accounted for, we obtain average technology estimates (capi-
tal coefficients) that are close to 0.3 with favorable residual diagnostics, whereas if 
we adopt the common-technology assumption the estimates are substantially dif-
ferent from 0.3 and residual testing indicates serious misspecification. Our 

1We refer to “technology heterogeneity” to indicate differential production-function parameters on 
observable inputs across countries, with unobservables captured as TFP.
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conclusion of technology heterogeneity is further supported by formal parameter 
homogeneity tests.

A second feature of our study is the focus on manufacturing instead of aggre-
gate economy data. The central importance of this industrial sector for successful 
development has become a widely recognized “stylized fact” in development eco-
nomics. Yet in contrast to the literature on cross-country growth regressions using 
aggregate economy (Durlauf et al ., 2005) or agriculture data (Mundlak et al ., 
2012; Eberhardt and Teal, 2013a,b, and references therein), there is comparatively 
little empirical work dedicated to the analysis of the manufacturing sector in a 
large cross-section of countries—with the exception of studies on the dual econ-
omy model (e.g. Martin and Mitra, 2002; Eberhardt and Teal, 2013a,b), and recent 
work by Dani Rodrik (Rodrik, 2013; McMillan et al ., 2014), cross-country empir-
ical analysis at the sectoral level is typically limited to the investigation of OECD 
economies (Bernard and Jones, 1996a,b; Eberhardt et al ., 2013). If  manufacturing 
matters for development, it is self-evidently important to learn about the produc-
tion process and its drivers in this industrial sector.

Our findings have two important implications for productivity analysis both 
at the sectoral and the aggregate economy level: first, like firms in different indus-
tries, different countries are characterized by different production technologies. 
Attempts at estimating cross-country production functions in pooled models, where 
by construction the same technology is imposed on all countries, are misspecified 
and yield biased estimates for the technology parameters and thus any TFP esti-
mates derived from them. Second, merely allowing for technology heterogeneity 
is also insufficient to capture the complex production process at the country level: 
in a globalizing world, economies interact through trade, cultural, political, and 
other ties, and at the same time are affected differentially by global phenomena 
such as the 1970s oil crises or the emergence of China as a major economic player. 
This creates a web of interdependencies within and across economies, leading to 
the breakdown of crucial assumptions for standard panel estimators employed in 
existing cross-country studies. Our empirical strategy accommodates this interplay 
of endogeneity, heterogeneity, and commonality to provide evidence for the funda-
mental forces driving manufacturing development across the globe.

In the following two sections, we discuss the challenges and potential solu-
tions to modeling production technology (and TFP) in panel data, focusing on the 
cross-country growth literature. There are, however, at least two separate literatures 
that we need to mention briefly to avoid a distorted view of existing empirical 
approaches to the same problem: first, the spatial econometric literature, with the 
most relevant contributions being the spatially augmented Solow model (Ertur and 
Koch, 2007) and a Schumpeterian perspective on growth and development (Ertur 
and Koch, 2011), allowing for a more flexible specification for TFP evolution; and, 
second, the empirical literature adopting stochastic frontier and data envelopment 
methods to analyze efficiency and productivity (going back to Schmidt and Sickles, 
1984). This approach can also accommodate flexible modeling of TFP (in the form 
of �i+��

i
ft as laid out in Section 3; see Lovell, 1996; Kneip et al ., 2012)  

and common technology in groups �g rather than for the entire sample of countries 
(Battese et al ., 2004).2  The incorporation of these empirical approaches in our 

2We are grateful to a referee for providing us with a whirlwind tour of this literature.
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analysis would go beyond the scope of our paper. Interested readers are referred to 
these papers for an entry point to the respective literatures.

The remainder of the paper is structured as follows. Section 2 motivates tech-
nology heterogeneity, non-stationarity, and cross-section dependence. Section 3 lays 
out the empirical framework and discusses econometric identification. Section 4 
introduces our data. Regression results are presented in Section 5, while their impli-
cations for productivity analysis are discussed in Section 6. Section 7 concludes.

2.  Modeling Technology in Panel Data

In this section, we motivate the concerns with which we approach the estima-
tion of cross-country production functions. We begin by motivating technology 
heterogeneity and then discuss salient time-series and cross-section properties of 
the data.

The “new growth” literature provides justification for heterogeneous-technol-
ogy parameters across countries. This strand of the theoretical growth literature 
argues that production functions differ across countries and seeks to determine the 
sources of this heterogeneity (Durlauf et al ., 2001). This can intuitively be taken to 
mean that countries can choose an “appropriate” production technology from a 
menu of feasible options. Representative examples from this literature include the 
work by Azariadis and Drazen (1990), Durlauf (1993), and Banerjee and Newman 
(1993). A simpler justification for heterogeneous production functions is offered by 
Durlauf et al . (2001), who argue that the Solow model was not intended to be valid 
in a common specification for all  countries, but may still be a good way to investigate 
each  country, by allowing for parameter differences across  countries. A more for-
mal treatment of technology heterogeneity is provided in Mundlak et al . (2012) and 
linked to the empirical framework that we adopt here in Eberhardt and Teal (2013b).

In the long run, macro variables such as value added or capital stock often 
appear to represent “nonstationary” processes in at least some countries (Lee et al ., 
1997; Pedroni, 2007). In empirical practice, many studies establish that real value 
series typically behave as I (1) processes (Nelson and Plosser, 1982; Lee et al ., 1997). 
Pedroni suggested that variable (non-)stationarity should not be seen as a “global” 
property, valid for all times, but as a “feature which describes local behaviour of 
the series within sample” (Pedroni, 2007, p. 432).

In our general empirical model, we emphasize a view of TFP as a “measure of 
our ignorance” (Abramowitz, 1956), incorporating a wider set of factors that can 
shift the production possibility frontier (for instance, “resource endowments, cli-
mate, institutions, and so on”; Mankiw et al ., 1992, pp. 410–11). This is in contrast 
to the notion of TFP as a definitive efficiency index, as commonly adopted in the 
microeconometric literature of productivity analysis. Furthermore, it is import-
ant to allow for the possibility that TFP is in part  common to all countries; for 
example, representing the global dissemination of non-rival scientific knowledge 
or global shocks, such as the 1970s oil crises. Alternatively, we can think of mul-
tiple economic, social, political, and cultural ties between countries from which 
commonality (cross-section correlation) may arise. The individual evolution paths 
of the unobservables making up TFP should not be restrained to follow simple 
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linear trends, but instead be allowed to evolve in a non-linear and even non-station-
ary fashion. For instance, a number of empirical papers report that their measures 
of TFP display non-stationarity, whether analyzed at the economy level (Bond 
et al ., 2010) or at the sectoral level (Bernard and Jones, 1996b). At the same time, 
a highly flexible approach to empirical modeling using annual data raises the ques-
tion of how business cycles influence or distort the empirical estimates (Eberhardt 
and Teal, 2011). All of these concerns point to the adoption of a multi-factor 
TFP structure that allows for common as well as country-specific elements and is 
uniquely suited for the analysis of productivity (Bai, 2009).

Existing empirical work has primarily concerned itself  with the (potential) 
endogeneity of regressors in the empirical framework (e.g. Caselli et al ., 1996; 
Bond et al ., 2001), an issue that is given considerably more attention in the liter-
ature than the data properties or the potential misspecification of the empirical 
regression model. While the empirical methods adopted here can address the simul-
taneity between TFP shocks and input accumulation, we resort to an alternative 
estimation approach following Pedroni (2000) to rule out the potential of reverse 
causality and assure ourselves that these regressions represent production-function 
models and not investment or labor-demand equations in disguise. Thus, in addi-
tion to incorporating much desirable technology heterogeneity, our empirical anal-
ysis also addresses the major concerns that have occupied the existing literature.

3. T he Empirical Model and Identification

Our regression analysis adopts a common-factor representation for a stan-
dard log-linearized Cobb–Douglas production-function model. We discuss all 
its features in detail below. Formally, for time periods t  = 1, …, T , countries 
i  = 1, …, N , and inputs m  = 1, …, k , let 

 

 

where f
⋅mt is a subset of ft. yit represents value added and xit represents the observ-

able inputs including labor and capital stock (all in logarithms). The technology 
parameters �i can differ across countries but are assumed constant over time.3  

(1) yit=

k
∑

m=1

�mixmit+uit, uit=�i+��
i
ft+�it,

(2) xmit=�mi+��
mi
gmt+�1mif1mt+…+�nmifnmt+vmit,

(3) ft=��ft−1+�t, and gt=��gt−1+�t,

3The latter assumption is clearly restrictive, but given the focus on cross-country technology hetero-
geneity against the background of data restrictions in the time-series dimension, we cannot relax this 
assumption for the heterogeneous  regression models. For the pooled  models, we ran separate regressions 
using pre- and post-1985 subsamples. The estimates for pooled ordinary least squares (POLS), common 
correlated effects pooled (CCEP), and first-difference ordinary least squares (FD-OLS) are virtually 
identical for the two subperiods. Period estimates for the fixed-effects (FE) estimator differ somewhat 
but 95 percent confidence bounds still show considerable  overlap.
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For unobserved TFP, we employ a country-specific TFP level �i in combination 
with a set of common factors ft, with country-specific factor loadings �i. In equa-
tion (2), we provide an empirical representation of the observable inputs (here, 
capital and labor), which are modeled as linear functions of the unobserved com-
mon factors ft and gt, with respective country-specific factor loadings. These fac-
tors introduce cross-section correlation in the observables and unobservables. 
Some unobserved common factors driving the variation in the observable inputs, 
gt, do not affect value added directly, but some others, ft, do.4  For illustration, a 
large global shock such as the recent Global Financial Crisis does not just affect 
economic performance, y , but also the evolution of inputs, such as investment in 
physical capital. The presence of the same unobserved factors in the input and 
output equations induces endogeneity in that the regressors are correlated with 
the unobservables in the production-function equation (uit), making it difficult to 
identify �i separately from �i and �i (Kapetanios et al ., 2011). Equation (3) speci-
fies the evolution of the common factors, which includes the potential for non-sta-
tionary factors (ϱ = 1, κ = 1) and thus non-stationary inputs and output.

The most important features of this setup are (i) the potential heterogeneity in 
the impact of observables and unobservables on output across countries (�i ,�i ,�i), 
(ii) the potential non-stationarity of observables and unobservables (yit,xit, ft, gt), 
and (iii) the endogeneity of observable inputs created by the common-factor struc-
ture. These properties have an important bearing on estimation and inference in 
macro panel data, which are at the heart of this paper. In the following, we illus-
trate how assumptions over these aspects give rise to different empirical estimators, 
relying on the classification in Table 1.5 

If  the data are demonstrably non-stationary, any specification choice carries 
implicit assumptions about the long-run equilibrium relationship in the data: any 
pooled regression model assumes that the cointegrating relationship is identical 
across all countries  in the sample (common technology), whereas a heterogeneous 
model assumes that the cointegrating relationship differs across countries . Note 
that if  the econometrician makes the wrong decision here and estimates a pooled 
model for what is a heterogeneous cointegrating relationship, then the empirical 
results are likely spurious by construction .6  Spurious results indicating serious 
empirical misspecification can, however, be detected by investigating residuals for 
non-stationarity or by implementing formal cointegration tests—we apply both 
strategies below.

4We introduce gt to avoid the impression that all macro variables are by assumption driven by the 
identical set of unobserved common factors ft, which would be wildly unrealistic.

5We use the following abbreviations: POLS, pooled OLS; 2FE, two-way fixed effects; FD, first-dif-
ference estimator; FE, country fixed effects; CCEP, common correlated effects pooled estimator 
(Pesaran, 2006); IFE, interactive fixed-effects estimator (Bai, 2009) CD-MG, cross-sectionally de-
meaned mean-group estimator; MG, mean group (Pesaran and Smith, 1995); GM-FMOLS, group-
mean fully modified OLS Pedroni (2000); CMG, common correlated effects mean group (Pesaran, 
2006); AMG, augmented MG, described in detail in the Appendix (in the Online Supporting 
Information).

6This is very easy to show: since our specification choice of homogeneity—imposing a common 
parameter, say β —is wrong, we enter linear combinations of the non-stationary observables (�i−�)xit 
in the error terms, which are thus non-stationary by construction.
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Assumptions about unobservable TFP also have direct implications for spec-
ification and thus identification: if  TFP is non-stationary, then we face the diffi-
culty that the estimation of the cointegrating relationship would somehow need 
to account for an unobservable  process. Again, if  the econometrician makes the 
wrong decision here in terms of specification—common versus idiosyncratic TFP 
evolution or a mix of the two—then the regression results may be spurious. If, on 
the other hand, TFP is assumed stationary, then deterministic components (year 
dummies, linear trends) should go a long way toward accounting for its impact and 
we can still estimate a cointegrating relationship between observable inputs and 
output (Pedroni, 2007). Our empirical implementation allows us to represent dif-
ferent scenarios for the specification of TFP that are representative of our assump-
tions about the heterogeneity or homogeneity of TFP evolution.

One of the central focal points of the cross-country growth empirical litera-
ture over the past two decades has been the endogeneity of inputs and, closely 
related, potential reverse causality in the estimation equation. The former implies 
that the capital and labor inputs of our production function are correlated with 
unobservable TFP; conceptually, it seems highly plausible that technical progress 
does not merely affect output directly, but also affects the choice of factor inputs—
and similarly for other aspects of TFP, such as common shocks. Reverse causality 
implies that although we have written down a production function, we may run the 
risk of this representing a misspecified investment or labor-demand equation. In 
the existing literature, identification in the face of these difficulties is typically 
argued to be achieved through instrumentation, in panel models frequently employ-
ing the own-instrumentation strategy of the GMM estimators by Arellano and 

TABLE 1  
Technology Heterogeneity and Unobserved Common Factors

Factor loadings, λ Homogeneous Heterogeneous

Factors, f Unrestricted Linear Unrestricted

Technology, β Homogeneous POLS, 2FE, FD FE with trends CCEP, IFE
�{i} +�ft �i +�i t �i +��

i
ft

MRW, Islam, (CEL)  MM  (CD) 
Heterogeneous CD-MG MG, GM-FMOLS AMG, CMG

�i +�ft �i +�i t �i +��
i
ft

DKM, Pedroni  ET, EHS 

Notes : In addition to the various estimators, we provide examples of empirical applications in 
the cross-country growth literature, which adopted these implementations: MRW, Mankiw et al . 
(1992); Islam, Islam (1995); CEL, Caselli et al . (1996); MM, Martin and Mitra (2002); CD, Costantini 
and Destefanis (2009); DKM, Durlauf et al . (2001); Pedroni, Pedroni (2007); ET, Eberhardt and Teal 
(2013a); EHS, Eberhardt et al . (2013). A number of these references are in parentheses: Caselli et al . 
(1996) use the Arellano and Bond (1991) estimator, while Costantini and Destefanis (2009) adopt the 
Bai and Kao (2006) estimator; however, their empirical specifications nevertheless fit into the re-
spective cells in our schematic presentation. For each case, we report the algebraic representation of 
how TFP is modeled when using this estimator. α  refers to TFP levels, and the combination of λ  and 
ft (potentially non-linear) or t  (linear) to TFP evolution over time—for the encompassing model, see 
equation (1). �{i} is intended to highlight that in the POLS model we have α , but in the 2FE and FD 
models we have �i—to further separate these cases would have constituted table overkill.
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Bond (1991) and Blundell and Bond (1998). These estimators, however, assume 
common technology and stationary variable series, as well as cross-section inde-
pendence, and their identification strategy is invalid if  any of these assumptions 
are violated (Pesaran and Smith, 1995).7 

Our own empirical implementation allows us to adopt a flexible approach to 
dealing with this endogeneity problem, in that we employ unobservable common 
factors ft that induce the correlation with observable inputs in all countries. Note 
that TFP is, of course, a catch-all, in that shocks such as the 1970s oil crises affect 
both output and inputs directly, with no means for the existing empirical analysis 
of production functions to distinguish this type of shock from technological prog-
ress through knowledge accumulation and diffusion. Furthermore, shocks may not 
always be global in nature—for instance, extreme weather episodes leading to pro-
ductivity shocks in only a small set of countries—so that it is important to empha-
size that the common-factor framework also allows us to account for common 
factors that are more “local” in their impact. In our preferred implementation, 
the resulting endogeneity problem will be tackled by accounting for the presence  of 
the unobservables in the empirical specification. In alternative implementations, (i) 
these factors are estimated (Bai, 2009), or (ii) a time-series econometric estimation 
approach (fully modified OLS) corrects for the endogeneity bias arising in this 
setup, but with more restrictive assumptions about common factors and thus TFP 
evolution (Phillips and Hansen, 1990; Pedroni, 2000). In order to tackle reverse 
causality, we will resort to a combination of the implementation dealing with the 
common factors and the “fully modified OLS” approach.

Conveniently, we can employ residual diagnostic tests to investigate whether 
our implementation has successfully captured the systematic relationships in unob-
servable TFP: focusing on the time-varying aspects of TFP, there is much to be said 
for interdependence across countries, whereby, for instance, knowledge created 
in one country spills over imperfectly to other countries. These spillovers induce 
dependence between unobservable TFP across countries and, since TFP is also 
correlated with the observable variables of the model, between labor and capital 
inputs across countries. By investigating whether residual series are cross-section-
ally correlated, we can highlight the extent to which we have been able to deal with 
the dependence caused by the unobservable factors and thus, indirectly, whether we 
have addressed the endogeneity concern: if  the residuals are white noise, we know 
that the empirical results do not suffer from endogeneity bias.

As this discussion highlights, the choice between estimating a pooled and a 
heterogeneous model as well as the treatment of TFP in this context is not some 
minor specification choice but a matter of great importance. We expect to see sig-
nificant differences in estimates when moving between results for pooled and het-
erogeneous estimators, as well as between models that make different assumptions 
about the nature of TFP. We expect to see that things go very wrong if  we make 
bad specification choices: parameter estimates may have nonsensical magnitudes or 
turn out to be insignificant, residuals will be non-stationary, and further diagnostic 
tests will indicate other serious shortcomings. This line of argument is the reason 

7This criticism extends to the various control function estimators used in the microeconometric 
literature on production functions. For details, see the discussion in Eberhardt and Teal (2011).
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why, below, we also present results for estimators that we would dismiss on theoret-
ical grounds as unreliable or biased: if  the assumptions implicitly made by adopting 
these estimators are seriously violated, then our diagnostic tests should pick this up.

We use Table 1 to categorize the various estimators adopted in our study and 
to provide some examples of previous work in the cross-country growth literature. 
With reference to equation (1), we also highlight the assumptions made about the 
TFP process in each case. The estimators assuming homogeneous technology in the 
upper panel of the table differ in their assumptions about the TFP process. The 
CCEP estimator by Pesaran (2006) and the IFE of Bai (2009) assume that TFP 
evolution differs across countries but can have common elements. The former rep-
resents an augmented version of a standard fixed-effects model, in which cross-sec-
tion averages of all variables, i.e. ȳt = N−1

∑

yit and x̄t = N−1
∑

xit, are introduced 
in the pooled regression to capture the unobserved common factors. In order to 
account for heterogeneity in the impact of these factors across countries, the coeffi-
cients on the cross-section averages are allowed to differ for each country. An alter-
native is provided by the IFE estimator (Bai, 2009), which is in the tradition of 
implementations that first estimate the common factors using principal component 
analysis (PCA) and then include them in the regression equation, which is then 
estimated iteratively until convergence is achieved (e.g. Bai and Ng, 2009).8  In the 
past, one criticism of this approach focused on the necessity to employ information 
criteria prior to estimation to establish the number of “relevant” common factors in 
the data. Recent theoretical work by Moon and Weidner (2015), however, showed 
that the assumption of too many common factors has a minimal impact on the 
consistency of the estimator. In contrast, the pooled OLS (POLS), two-way fixed-ef-
fects (2FE), and first-difference OLS (FD) estimators all assume common TFP evo-
lution, captured by common year effects, but represent different assumptions about 
country-specific TFP levels: for 2FE and FD, these are—as in the CCEP—assumed 
to differ across countries, as for instance in Islam (1995), whereas they are assumed 
common in the POLS—matching the original Mankiw et al . (1992) assumption.

Non-stationarity has different implications for this set of pooled estimators: 
for POLS and 2FE, we assume homogeneous cointegration. Since both estimators 
account for time fixed effects,9  there is nothing to prevent us from including unob-
served TFP in this cointegrating relationship, provided that it is common to all 
countries. If  our specification choice is correct, the estimates from these models 
under cointegration would be super-consistent, implying that endogeneity would 
not lead to first-order bias in these models (Engle and Granger, 1987). The FD 
estimator is unaffected by non-stationarity, since the differencing of the estimation 
equation renders its observables and unobservables stationary by construction. At 
the same time, we are prevented from making any statements about a “long-run 
equilibrium” relationship from the FD estimate. The CCEP estimator theoretically  
yields consistent, but not super-consistent, estimates of β  or the mean of �i, regard-
less of whether our choice of homogeneous cointegration is correct (Kapetanios 

8A related approach by Kneip et al . (2012) instead combines non-parametric methods with PCA 
to obtain the common factors.

9For POLS in the form of year dummies, in the case of 2FE, the mathematically equivalent data 
transformation into deviations from the cross-section mean.
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et al ., 2011). However, in practice it is often found that this estimator yields very 
different estimates from its mean-group version (see below) and concerns for het-
erogeneity misspecification remain. The Bai (2009) IFE assumes that the common 
factors are stationary, although since the PCA estimation is implemented on the 
differenced data, consistency may well extend to the non-stationary case, although 
to the best of our knowledge no theoretical results are available.

All models in the lower panel of the table allow for heterogeneous technology 
and are implemented in two steps: the first step represents some country-specific 
regression, while the second step consists of the averaging of country-specific esti-
mates across the sample. All of these models thus represent “mean-group”–type esti-
mators, named after the seminal contribution by Pesaran and Smith (1995). Again, 
they differ in their assumptions about the TFP process, where we have to distinguish 
both the commonality and the nature of TFP growth over time (all models allow for 
different TFP levels across countries): the estimators in the first and third columns 
(CD-MG; AMG, and CMG) allow for TFP to evolve in an unrestricted fashion, 
which includes the possibility of non-stationary TFP. In the latter case, they can 
accommodate cointegration between inputs, output, and TFP. These implementa-
tions, however, differ in their assumption about the commonality of TFP: in the 
CD-MG, TFP evolution is assumed to be common to all countries in the sample, 
whereas in the AMG and CMG it is allowed to differ. These models are implemented 
by use of data in deviation from the cross-section means (CD-MG) or by augmen-
tation of the country-specific estimation equation with cross-section averages of all 
variables (CMG: see Pesaran, 2006; Chudik et al ., 2011; Kapetanios et al ., 2011) or 
alternative estimated placeholders (AMG: see Bond and Eberhardt, 2013; see also 
the Appendix, in the Online Supporting Information)—estimation is always by OLS.

In contrast, the heterogeneous estimators in the second column (MG and 
GM-FMOLS) of the diagram assume constant TFP growth and thus stationary 
TFP: these estimators adopt linear trends to capture TFP evolution over time 
and require  a cointegrating relationship between inputs and output. Although the 
parameter estimates are in this case super-consistent, it was found that corrections 
for endogeneity and dynamic misspecification—both leading to second-order 
bias—as implemented in the “fully modified OLS” (FMOLS) estimator, are neces-
sary in finite samples (Phillips and Hansen, 1990).

As was indicated above, for the AMG and CMG estimates we cannot rule 
out reverse causality, which represents a major shortcoming. In order to address 
this, we simply adopt FMOLS versions of these estimators, thus using augmented 
estimation equations, where the augmentations are cross-section averages or other 
placeholders. This empirical strategy can address endogeneity, serial correlation, 
and reverse causality even in the case of non-stationary TFP .

Inference for the pooled estimators builds on standard White heteroskedastic-
ity-robust standard errors,10  with the exception of the CCEP, where we employed 
the bootstrap. Inference in the heterogeneous parameter models follows Pesaran 
and Smith (1995), employing a non-parametric variance estimator to construct 

10Standard errors for the capital coefficients increase to 0.05 in the POLS and to 0.11 in the FD 
models if  we cluster by country—those for the 2FE model are unchanged since the Stata® implemen-
tation that we adopt clusters standard errors.
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standard errors and t -ratios—the exception here is the group mean version of the 
FMOLS estimator, which obtains “panel t -statistics” as t̄𝛽∗ = N−1∕2

∑

i ti, where ti 
is the t -ratio in country i  and N  is the number of countries.

4. D ata and Data Properties

For our empirical analysis, we employ aggregate sectoral data for manufac-
turing from developed and developing countries for the period 1970–2002 
(UNIDO, 2004)—data from the same source (albeit at a higher level of disaggre-
gation) were recently used by Rodrik (2013) to investigate cross-country conver-
gence in manufacturing value added. Our sample represents an unbalanced panel 
of 48 countries with an average of 24 time-series observations (minimum 11, 
maximum 33).11  Basic descriptive statistics and the sample makeup are detailed 
in the Appendix. The data allow us to estimate production functions with manu-
facturing-sector value added as output, and labor force and capital stock in man-
ufacturing as inputs—the latter is created from data on gross fixed-capital 
formation following the standard perpetual inventory methodology. Our focus 
here is on value-added specifications, although we also considered gross-output 
specifications, results for which can be found in Eberhardt (2009). Further dis-
cussion of the data and their construction is confined to the Appendix.

In preparation for our regression analysis in Section 5, we carried out a range 
of variable unit root tests—the detailed results are presented in the Appendix. 
Despite all the problems related to panel unit-root testing, as well as consider-
ing the present data dimensions and characteristics, we can conclude that these 
results strongly suggest that the variable series in levels are non-stationarity I (1). 
We further applied the Pesaran (2015) test for weak cross-section dependence to 
our model variables. The results presented in the Appendix suggest that all series 
are subject to strong dependence.

5. R egression Results

The results in Panel A of Table 2 are based on estimating pooled  models with 
variables in levels or first differences, including year dummies or in the CCEP 
country-specific period averages, following Pesaran (2006). Estimates for the 
capital coefficient in these regressions with constant returns to scale imposed are 
statistically significant at the 5 percent level or 1 percent level. For all three esti-
mators in levels, the regression diagnostics (not reported) suggest serial correla-
tion in the error terms, while constant returns to scale are rejected at the 1 percent 
level of significance except for POLS. Further, the OLS and 2FE residuals are 
found to be non-stationary, suggesting that the empirical results reported are 

11We do not carry out any interpolation to fill gaps in the time series and do not account for miss-
ing observations in any way. Our preferred empirical specifications are based on heterogeneous param-
eter models, where arguably the unbalancedness (around 25 percent of observations in the balanced 
panel are missing) comes less to bear on the estimation results than in the homogeneous models due to 
the averaging of estimates. For details on missing observations, see Table A.2 in the Appendix.
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potentially spurious. Cross-section dependence is present in all residual series to 
a greater or lesser extent, with the 2FE and CCEP models rejecting weak 
cross-section dependence at the 5 percent level. The POLS results in Model [1] 
suggest that failure to account for time-invariant (TFP-level) heterogeneity 
across countries yields biased results: at around 0.8, the capital coefficient is con-
siderably inflated. Accounting for country-specific intercepts in Model [2] 
reduces these coefficient estimates somewhat. The same parameter in the CCEP 
results in Model [3] is yet lower still, around 0.6. The OLS regression in first dif-
ferences in Model [4] yields quite different results: the capital coefficient is now 
around 0.3, CRS cannot be rejected, and the AR(1) tests (not reported) show only 
first-order serial correlation for this model, which is to be expected given that the 
errors are in the first differences. This echoes the favorable performance in sim-
ulation exercises to capture the average  of a heterogeneous-technology coeffi-
cient (see Bond and Eberhardt, 2013, and related online Appendix). However, 
recall that the first-difference specification cannot be interpreted as a long-run 
equilibrium equation and we may well be capturing short-run (business-cycle) 
fluctuations in these results. Nevertheless, it appears that the FD estimator 
obtains sound diagnostics and a theory-consistent technology estimate—this 
indicates that accounting for non-stationarity (of factor inputs and TFP) plays a 
crucial role in estimating cross-country production functions.12 

We can make use of the year dummy coefficients derived from the pooled FD 
model to obtain an estimate of the common dynamic process 𝜇̂∙

t
: an estimate of the 

average TFP evolution (for details, see the Appendix). Figure 1 illustrates the evo-
lution path of this common dynamic process for the unrestricted and CRS models. 
The graphs show severe slumps following the two oil shocks in the 1970s, while the 
1980s and 1990s indicate considerable upward movement.13  If  we follow the “mea-
sure of our ignorance” interpretation of TFP, then a decline in global manufactur-
ing TFP as evidenced in the 1970s should not be interpreted as a decline in 
knowledge, but a worsening global manufacturing environment , which seems 
plausible.

In the following, we relax the assumption implicit in the pooled regressions 
that all countries possess the same production technology. At the same time, we 
maintain that common shocks and/or cross-sectional dependence have to be 
accounted for in some fashion. Unweighted averages of country parameter esti-
mates are presented in Panel B of Table 2.14  The t -statistics for the country-regres-
sion averages reported are measures of dispersion for the sample of country-specific 
estimates, following Pesaran and Smith (1995).

12Simulation exercises (Bond and Eberhardt, 2013) generally highlight the favorable performance 
of the FD estimator in standard non-stationary panel setups. However, while this may yield an unbiased 
estimate of average technology, country-specific TFP estimates are nevertheless biased if  the “true” 
technology differs across countries.

13These graphs are “data specific”: for years where data coverage is good; this can be interpreted as 
“global,” whereas in later years (ten countries have data for 2001, only two for 2002, omitted from the 
graph) this interpretation collapses.

14Robust means weighing down outliers yield very similar results, with kernel estimates of the dis-
tribution of capital coefficients showing no influential outliers.
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Our first observation regarding the averaged country results is that across all 
specifications the means of the capital coefficients are considerably lower than in 
the pooled levels models: between 0.2 and 0.5, rather than between 0.6 and 0.9.15  
Closer inspection suggests the following patterns across the heterogeneous param-
eter regression results: first, the two more restrictive specifications in Models [1] 
and [2] are misspecified. For the MG, which assumes linear TFP evolution, the 
residual diagnostics indicate strong cross-section dependence; for the CD-MG, 
assuming common TFP evolution, the residuals appear non-stationary, so that we 
cannot rule out that these results are spurious. Second, for the AMG estimators, 
which account for a flexible TFP process in the estimation equation, the diagnostic 
test results are favorable and the averaged coefficients around 0.3. Third, the 
results for the CMG with and without an additional country trend differ consider-
ably, with the former close to the AMG results and the latter slightly larger, around 
0.45. Diagnostic tests, however, suggest that the standard CMG suffers from 
cross-sectionally strongly dependent residuals (see the CD test results of  Pesaran, 
2015).

Our results imply that: (i) heterogeneous specifications that allow for a combi-
nation of commonality and idiosyncracy in the TFP evolution provide the closest 
match to the data and the most favorable diagnostics; (ii) the estimated capital 
coefficients in the preferred empirical specifications are close to 0.3; (iii) TFP 

15The results presented are robust to alternative specifications (all results are available on request): 
first, we estimated all models in first differences; second, we adopted alternative country-level determin-
istics (an additional squared trend in the levels models; an additional trend in the models in a first-dif-
ference specification); third, we estimated gross-output-based models including material inputs as addi-
tional covariate; and fourth, we estimated dynamic ARDL versions of the presented static models.

Figure 1.  The Evolution of “Average” TFP
Notes : Derived from results in column [4], Panel A of Table 2.
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appears to be non-stationary and thus leads to empirical misspecification in mod-
els that ignore this property;16  and (iv) our preferred results based on favorable 
residual diagnostics represent a close match between the Pesaran (2006) CMG and 
the Bond and Eberhardt (2013) AMG estimators.

These conclusions are backed up by the results for an alternative estimator, 
the Bai (2009) interactive fixed effects, which are presented in Table 3: the capital 
coefficients are uniformly close to 0.3, except in case of the single-common-factor 
model in Model [1], for which the estimate is close to 0.6. This model also displays 
non-stationary residuals. The diagnostics are favorable for all other models, sug-
gesting stationary and only weakly dependent residuals, although it is notable that 
only the specifications with two and five common factors do not reject constant 
returns to scale. The relative stability of these results regardless of the number of 
factors included (other than the case of just a single factor) suggests that the model 
in column [2], assuming two factors, captures the data quite well. Comparing these 
results with those for the AMG and CMG, it appears that the standard CMG 
implementation in Panel B, column [5] of Table 2, which on the basis of containing 
a single observed covariate (log capital stock per worker) can only capture a single 
common factor  ft, is biased upward.

Finally, the Pedroni (2000) group-mean FMOLS approach, for which results 
are presented in the Appendix, provides further evidence that failure to account for 
non-stationary TFP leads to the collapse of the empirical estimates when analyzing 
cross-country manufacturing production. When we investigate the full sample of 
48 countries, we find that the standard GM-FMOLS yields very low and statisti-
cally insignificant coefficient estimates for capital, whereas upon inclusion of the 
common dynamic process, or of cross-section averages, we obtain results that 
closely match those from the previous table of OLS-based results. Since the 
FMOLS methodology is robust to reverse causality, this provides assurance that 
our AMG and CMG estimates represent production-function coefficients and not 
misspecified investment or labor-demand equations. In a further robustness check, 
we limit the sample to 26 countries for which individual time-series unit-root and 
stationarity (DF and KPSS) tests could not reject non-stationarity (the FMOLS 
approach assumes non-stationarity and cointegration),17  to show that results do 
not change in any significant way.

Based on the residual diagnostics, our empirical results thus largely favor 
models with heterogeneous technology, which account for a combination of het-
erogeneous and common TFP. The notable exception here is the (pooled) first-dif-
ference estimator, which we found relatively unaffected by the failure to explicitly 
model these features, likely due to the absence of integrated variables and processes 
once data are differenced. In our minds, the fact that the FD estimator obtains a 
similar capital coefficient to that in the averaged AMG or CMG results is in spite 

16A comparison of results for the unit-root analysis of the regression residuals 𝜀̂ and of y−𝛽k or 
its heterogeneous-technology variant (which contains 𝜀̂ and  the common factors) indicates that the 
POLS, 2FE, and CD-MG models cannot capture non-stationary TFP.

17We appreciate that the single time-series tests that are typically employed have low power in the 
present short time series, but this analysis is intended to be indicative of the remarkable robustness of 
our findings to a reduction in the sample to countries with plausibly  rather than definitively I (1) variable 
series.
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of  technology heterogeneity, and not because pooled specifications are favorable. 
To this end, we also carried out a significant number of formal parameter homoge-
neity tests (see the Appendix), which confirmed our preference for heterogeneous 
technology. Since residual testing for stationarity represents a somewhat ad hoc  
cointegration test, we also confirmed this property in our preferred heterogeneous 
model, adopting the Gengenbach et al . (2016) testing procedure (for the results, 
see the Appendix).

Our general production-function framework provides a number of insights 
into TFP estimation: first, it seems sensible to allow for maximum flexibility in the 
structure of the empirical TFP terms; if  TFP represents a “measure of our igno-
rance,” then it makes sense to allow for differential TFP across countries and time, 
with the latter unconstrained with regard to non-stationarity.

Second, it further makes sense to keep an open mind about the commonality 
of TFP: while early empirical models (Mankiw et al ., 1992; Islam, 1995) assumed 
common TFP growth for all countries, later studies preferred to specify differential 
TFP evolution across countries. We believe that the arguments for commonality 
(the non-rival nature of knowledge, spillovers, and global shocks) and idiosyncracy 
(patents, tacit knowledge, and learning by doing) call for an empirical specification 
that does not rule out either by construction.

Third, following Durlauf et al . (2001) and Pedroni (2007), we argue for an 
empirical specification that allows for parameter heterogeneity across countries 
and for a shift away from the widespread focus on TFP analysis and toward an 
integrated treatment of the production technology in its entirety , including tech-
nology heterogeneity, TFP levels, and growth rates.

We can illustrate the contribution of these three aspects of production tech-
nology in Figure 2, where we plot country-specific linear regressions of value 
added per worker on capital stock per worker for our manufacturing data from 
48 countries: in the upper panel, which ignores TFP growth over time, the slopes 
of these production functions appear to be very similar, reinforcing the notion 
of a common production technology, whether we assume common or heteroge-
neous intercept terms (TFP levels) and common or heterogeneous slopes (capital 
coefficients). The same result obtains if  we assume common TFP growth for all 
countries in the sample. From this, we conclude that common TFP evolution in 
combination with either common or heterogeneous technology leads to empirical 
results that run counter to the macro factor share evidence, namely a capital coef-
ficient around 0.7 rather than around 0.3.

In the lower panel, we adjust the value added per worker variable for TFP 
evolution over time18  and again plot the country-specific regression lines implied 
by a production-function model. Thus, allowing for heterogeneous TFP and com-
mon shocks, we can see that the fitted regression lines now provide clear evidence 
of technology heterogeneity, with the average capital coefficient from a heteroge-
neous parameter model around 0.3, while a pooled model still yields an inflated 
estimate of 0.79. From this, we can conclude that heterogeneous TFP evolution 

18We compute lyadj = ly− ĉi t− d̂i𝜇̂
∙
t
 following equation (4) below, using the results for the em-

pirical model in Panel B, column [3] of Table 2.
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Figure 2.  Technology Heterogeneity in the Analysis of Development and TFP
Notes : The graph in panel (a) simply fits a linear regression line from country-specific data 

on manufacturing value added per worker on manufacturing capital stock per worker (in logs) 
separately in 48 countries (the teal-colored lines), thus ignoring TFP evolution, spillovers, and 
common shocks. The red line represents the pooled OLS regression slope. We further report the 
estimated slopes for the pooled model with and without fixed effects and the mean slope for a naive 
mean-group model (with country intercepts only). Values in parentheses are t -ratios. The graph 
in panel (b) uses log manufacturing value added per worker adjusted for annual country-specific 
TFP and plots this variable against log manufacturing capital stock per worker separately for each 
of the 48 sample countries. Although virtually identical, the pooled regression line, in red here, is 
for adjusted value added per worker. Again, we report slope coefficients for pooled OLS with and 
without country fixed effects, and the mean-group result (which is a graphical representation of the 
AMG result in Panel B, column [3] of Table 2). [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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alone yields results that are in conflict with the macro data, whereas the combina-
tion of heterogeneous technology and heterogeneous TFP evolution yields a global 
average of 0.3.

6. T FP in a Heterogeneous-Technology World

What are the implications of homogeneity misspecification for estimated 
TFP levels and growth rates? In the following, we provide some insights into 
the resulting patterns of TFP growth and introduce a new approach to estimate 
TFP levels, which is necessitated by the adoption of a heterogeneous-technol-
ogy model. In both cases, we try to establish whether the choice between homo-
geneous and heterogeneous technology makes a substantial difference to TFP 
measurement.

In the top-left plot of Figure 3, we compare the distribution of the annual 
TFP growth estimates from growth accounting (the dashed transparent histogram) 
and our preferred panel time-series regression (the gray histogram). While both 
distributions look Gaussian, it is obvious that the accounted TFP growth rates 
are substantially greater in range. The top-right plot in the same figure fits a linear 
regression line (with 90 percent confidence bands) for the annual TFP growth rates 
against value added per worker (in logs). While the estimated  TFP growth rates 
from the preferred heterogeneous estimator seem to display a negative relationship 
with output, a tendency that disappears if  we omit the top and bottom 5 percent 
of the distribution in the bottom-right plot or if  we employ total-period averages 
of TFP growth and value added per worker in the bottom-left plot, the accounted  
TFP growth rates consistently display a positive relationship regardless of censor-
ing or averaging.

We can draw two conclusions from this analysis: first, the range and variance 
of the common-technology TFP growth estimates are artificially inflated, thus pro-
viding an increased likelihood of statistically significant results in further “TFP 
regressions.” Second, under the assumption of common technology, these TFP 
growth series are clearly linked to the level  of  development, with richer countries 
enjoying higher TFP growth.

A further implication of a shift from common to heterogeneous technology is 
that we require a new methodology to arrive at TFP-level estimates from our pre-
ferred country-level regression models: from these regressions, we can obtain esti-
mates for the intercept, technology parameters, idiosyncratic, and common trend 
coefficients or the parameters on the cross-section averages for AMG and CMG 
specifications, respectively. One may be tempted to view the coefficients on the 
intercepts as TFP-level estimates, just as in the pooled fixed-effects case. However, 
once we allow for heterogeneity in the slope coefficients, the interpretation of the 
intercept as an estimate for base-year TFP level is no longer valid, as was already 
recognized by Bernard and Jones (1996a). In order to illustrate our case, we employ 
a simple linear relationship between value added and capital where the contribu-
tion of TFP growth  has already been accounted for (see equation (4) below).

In Figure 4, we provide scatter plots for the “adjusted” log value added per 
worker (on the y -axis) against log capital per worker (on the x -axis) as well as a 
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fitted regression line for these observations in each of the following four coun-
tries: in the upper panel, France (circles) and Belgium (triangles); and in the lower 
panel, South Korea (circles) and Malaysia (triangles). The “adjustment” is based 
on the country-specific estimates from the AMG regression in Table 2, Panel B: we 
compute 

where ĉi and d̂i are the country-specific estimates for the linear trend term and the 
common dynamic process, respectively. We then plot this variable against log capi-
tal per worker for each country separately. This provides a visual equivalent of the 
estimates for the capital coefficient (the slope) and a candidate TFP-level estimate 
(the intercept) in the country regression.

The upper panel of Figure 4 shows two countries (France and Belgium) 
with virtually identical capital-coefficient estimates (slopes). The in-sample fit-
ted regression line is plotted as a solid line, while the out-of-sample extrapolation 

(4) y
adj

it
=yit− ĉi t− d̂i𝜇̂

∙
t
,

Figure 3.  TFP Growth from Regression and Growth Accounting (�K = .33)
Notes : We compare the TFP growth estimates derived from our preferred regression model, 

the AMG estimator (Table 2, Panel B, column [3]—the gray histogram and 90 percent confidence 
interval; capital coefficients differ across countries), with those obtained from simple TFP growth 
accounting (transparent histogram and dashed 90 percent confidence intervals; common capital 
coefficient = 0.33). Clockwise from the top left, the graphs provide (i) histograms for these two 
sets of estimates, (ii) linear regression lines (and 90 percent confidence intervals) of TFP growth 
against log value added per worker, (iii) as in (ii) but removing the top and bottom 5 percent of TFP 
growth estimates as computed in either exercise, and (iv) as in (ii) but using 48 country TFP growth 
averages.
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toward the y -axis is plotted in dashes. The country estimates for the intercepts can 
be interpreted as TFP levels, since these countries have very similar capital-coef-
ficient estimates (b̂FRA ≈ b̂BEL ≈ b̂). In this case, the graph represents the linear 
model yadj

it
= âi+ b̂log(K∕L)it, where âi possesses the ceteris paribus  property. In 

contrast, the lower panel shows two countries (Malaysia and South Korea) that 

Figure 4.  Regression Intercepts and TFP-Level Estimates
Notes : In-sample (solid) and out-of-sample (dashed) linear prediction of the relationship 

between TFP-adjusted value added per worker (on the y -axis) and capital stock per worker (on the 
x -axis), all variables being in logarithms—for details on the TFP adjustment, see the main text.
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exhibit very different capital-coefficient estimates. In this case, âi cannot be inter-
preted as possessing the ceteris paribus  quality, since b̂MYS ≠ b̂KOR (i.e. ceteris non 
paribus ), or as Bernard and Jones (1996a) put it: “comparing apples to oranges.” In 
the graph, we can see that Malaysia has a considerably higher intercept term than 
South Korea, even though the latter’s observations lie above those of the former 
at any given point in time. This illustrates that once technology parameters in the 
production function differ across countries, the regression intercept can no longer 
be interpreted as a TFP-level estimate.

We can suggest an alternative measure for TFP-levels that is robust to param-
eter heterogeneity. Referring back to the scatter plots in Figure 4, we marked the 
base-year level of log capital per worker by vertical lines for each of the four coun-
tries. We suggest the use of the locus where the solid (in-sample) regression line hits 
the vertical base-year capital stock level as an indicator of the TFP level in the base 
year. These adjusted  base-year and final-year TFP levels are thus 

respectively, where log(K∕L)0, i is the country-specific  base-year value for capital 
per worker (in logs), τ  is the total period for which country i  is in the sample, and 𝜇̂∙

𝜏
 

is the accumulated common TFP growth for this period τ  with the country-specific 
parameter d̂i—it is easy to see that the intercept problem only has a bearing on the 
TFP-level  estimates.

Table 4 provides details on absolute rank differences implied by TFP-level 
rankings for accounting (“Levels”) and regression (“2FE,” “AMG,” and “CMG”) 
exercises. These descriptives indicate the very substantial differences arising from 
TFP levels obtained from common versus heterogeneous-technology models.

7. C oncluding Remarks

In this paper, we have investigated how differences in manufacturing-sec-
tor technology across countries can be modeled empirically. We have adopted 
an encompassing framework that allows for the possibility that the impact of 
observable and unobservable inputs on output differs across countries, as well 
as for non-stationary evolution of these processes. Our regression framework has 
enabled us to model a number of characteristics that are likely to be prevalent 
in manufacturing data from a diverse set of countries: first, we have allowed for 
technology heterogeneity across countries. The empirical results are confirmed 
by formal testing procedures to suggest that technology parameters in manufac-
turing production indeed differ across countries. This finding supports earlier 
work using aggregate economy data (Durlauf, 2001; Pedroni, 2007): if the pro-
duction technology differs in cross-country manufacturing, the aggregate econ-
omy technology is unlikely to be homogeneous.

Second, we have allowed for unobserved common factors to drive output, 
but with differential impact across countries, thus inducing cross-section depen-
dence. These common factors are visualized by our common dynamic process, 
which follows patterns over the 1970–2002 sample period that match historical 
events. The interpretation of this common dynamic process 𝜇̂∙

t
 would be that for 

(5) âi+ b̂i log(K∕L)0,i and âi+ b̂i log(K∕L)0,i+ ĉi𝜏+ d̂i𝜇̂
∙
𝜏
,



Review of Income and Wealth, Series 66, Number 2, June 2020

356

© 2019 International Association for Research in Income and Wealth

T
A

B
L

E
 4

  
C

o
u

n
t

r
y

 R
a

n
k

in
g

s 
b

y
 T

F
P

 L
e

v
e

l

A
bs

ol
ut

e 
ra

n
k 

d
if

fe
re

nc
e 

b
et

w
ee

n 
im

pl
em

en
ta

ti
on

s

[1
]

[2
]

[3
]

[4
]

[5
]

[6
]

A
M

G
—

F
E

C
M

G
—

F
E

L
ev

el
s—

F
E

L
ev

el
s—

A
M

G
L

ev
el

s—
C

M
G

C
M

G
—

A
M

G

M
in

im
u

m
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
M

ea
n

10
.5

10
.2

7.
0

5.
8

5.
4

1.
1

M
ed

ia
n

10
.0

10
.0

5.
0

5.
0

4.
5

1.
0

IQ
R

7.
5

9.
0

7.
0

7.
0

6.
8

1.
0

M
ax

im
u

m
33

.0
34

.0
24

.0
17

.0
19

.0
7.

0

N
ot

es
 : 

T
he

 t
ab

le
 p

ro
vi

de
s 

d
is

tr
ib

ut
io

na
l s

ta
ti

st
ic

s 
on

 t
he

 r
el

at
iv

e 
T

F
P

-l
ev

el
 r

an
k

in
g 

(b
y 

m
ag

n
it

ud
e)

 d
er

iv
ed

 f
ro

m
 t

he
 t

h
re

e 
re

gr
es

si
on

 m
od

el
s 

as
 w

el
l a

s 
th

e 
le

ve
ls

 a
cc

ou
nt

in
g 

fo
r 

19
90

: “
A

M
G

—
F

E
” 

is
 b

as
ed

 o
n 

th
e 

ab
so

lu
te

 d
if

fe
re

nc
e 

b
et

w
ee

n 
th

e 
T

F
P

-l
ev

el
 r

an
k

in
gs

 i
m

pl
ie

d 
by

 t
he

 A
M

G
 a

nd
 F

E
 e

st
im

at
or

s,
 a

nd
 s

im
i-

la
rl

y 
fo

r 
th

e 
ot

he
r 

co
m

pa
ri

so
ns

. F
E

, t
w

o
-w

ay
 f

ix
ed

-e
ff

ec
ts

 e
st

im
at

or
 (

T
ab

le
 2

, P
an

el
 A

, c
ol

u
m

n 
[2

])
; A

M
G

, a
ug

m
en

te
d 

m
ea

n-
gr

ou
p 

es
ti

m
at

or
 (

T
ab

le
 2

, P
an

el
 B

, 
co

lu
m

n 
[3

])
; C

M
G

, m
ea

n-
gr

ou
p 

ve
rs

io
n 

of
 t

he
 P

es
ar

an
 (2

00
6)

 C
C

E
 e

st
im

at
or

 (
T

ab
le

 2
, P

an
el

 B
, c

ol
u

m
n 

[5
])

; I
Q

R
, i

nt
er

qu
ar

ti
le

 r
an

ge
 o

f 
ra

n
k 

d
if

fe
re

nc
es

.



Review of Income and Wealth, Series 66, Number 2, June 2020

357

© 2019 International Association for Research in Income and Wealth

the manufacturing sector, similar factors  drive production in all countries, albeit to 
different extents . This is equivalent to suggesting that the “global tide” of innova-
tion can “lift all boats,” but that technology transfer from developed to developing 
countries is dependent on the recipient’s production technology and absorptive 
capacity, among other things.

Third, our empirical setup allows for a type of endogeneity whereby the unob-
servables driving output are also driving the evolution of inputs. This leads to an 
identification problem, in that standard panel estimators cannot identify the param-
eters on the observable inputs as distinct from the impact of the unobservables. 
Monte Carlo simulations (Bond and Eberhardt, 2013) have highlighted the ability 
of the CMG and AMG estimates to deal with this problem successfully, and our 
empirical results indicate parity between these two heterogeneous panel estimators. 
Furthermore, additional analysis has confirmed that the empirical results are robust 
to the use of an alternative panel time-series econometric approach that further 
addresses reverse causality. Standard practices to deal with endogeneity (Arellano 
and Bond, 1991; Blundell and Bond, 1998) are only appropriate in a stationary 
framework with homogeneous technology (Pesaran and Smith, 1995). The adop-
tion of a non-stationary panel econometric approach that accounts for cross-sec-
tion dependence is, in our view, a sound empirical strategy to address both of these 
concerns and should be applied more widely to cross-country productivity analysis.

Our analysis represents a step toward making cross-country empirics relevant 
to individual countries by moving away from empirical results that characterize 
the average country  and toward a deeper understanding of the differences across 
countries , a notion that is clearly echoed elsewhere in the literature (Temple, 1999; 
Durlauf, 2001; Durlauf et al ., 2005, 2001). Cross-country regressions of time aver-
ages, in the empirical tradition of Barro (1991) and Mankiw et al . (1992), empha-
size the variation in the data across countries (“between variation”) and implicitly 
assume that the processes driving capital accumulation in, say, the United States 
and Malawi are the same, and that at a distant point in time the latter can fea-
sibly reach the capital-to-labor ratio of the former to achieve the same level of 
development. However, development is an evolution over time, which requires that 
apart from recognizing the potential for differences across countries, we analyze 
the individual evolutionary paths of countries over time (emphasizing the “within 
variation” in the data). The empirical methods used in this paper enable us to 
incorporate all of these concerns within one unifying empirical framework. A sec-
ond conclusion from this study is that the key to understanding cross-country dif-
ferences in income is not exclusively linked to understanding TFP differences, but 
requires careful concern for differences in production technology. Since modeling 
production technology as heterogeneous across countries requires an entirely dif-
ferent set of empirical methods, we have focused on developing this aspect in the 
present paper and have left empirical testing of rival hypotheses about the patterns 
and sources of technological differences for future research.
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