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Asset indices are widely used, particularly in the analysis of Demographic and Health Surveys, where
they have been routinely constructed as “wealth indices.” Such indices have been externally validated
in a number of contexts. Nevertheless, we show that they often fail an internal validity test, that is,
ranking individuals with “rural” assets below individuals with no assets at all. We consider from first
principles what sort of indexes might make sense, given the predominantly dummy variable nature of
asset schedules. We show that there is, in fact, a way to construct an asset index which does not violate
some basic principles and which also has the virtue that it can be used to construct “asset inequality”
measures. However, there is a need to pay careful attention to the components of the index. We show
this with South African data.
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1. INTRODUCTION

Asset indices have become widely used since Filmer and Pritchett (2001)
described a simple way to calculate them. Their use really took off once the
Demographic and Health Surveys incorporated the calculation of a “wealth
index” with the release of each dataset (Rutstein and Johnson, 2004). A Google
Scholar search (April 18, 2014) came up with 13,900 “hits” on “DHS wealth
index,” 2,434 citations of the article by Filmer and Pritchett (2001), 591 citations
of the paper by Rutstein and Johnson (2004) documenting the creation of the
DHS index. The main use of the indices in this vast literature is in creating wealth
rankings, separating the “rich” from the “poor” as ingredients for more substan-
tive analyses.

Several articles, including the original piece by Filmer and Pritchett (2001),
have tried to validate these indices against external criteria, for example, incomes
or expenditures. A recent review (Filmer and Scott, 2012) concludes that “the use
of an asset index can clearly provide useful guidance to the order of magnitude of
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rich-poor differentials” (p. 389), although the asset indices measure a different
concept than per capita consumption. Indeed, the paper devotes attention to the
question of under which circumstances the two measures will provide the most
similar rankings, arguing that this will occur when per capita expenditures are
well explained by observed household and community characteristics and when
“public goods” are more important in household expenditures than “private
ones” such as food. In other work, we have ourselves argued that asset indices do
a good job of proxying for income differences (Wittenberg, 2009, 2011).

None of this literature has examined whether the asset indices calculated in
the traditional way make sense internally, that is, according to a number of simple
criteria such as that individuals that have more (of anything) should be ranked
higher than individuals that have less. In particular, little attention has been paid
to the problems created by the predominantly dummy variable nature of asset
schedules. We show that this is not just a theoretical issue but that, in a number of
cases, DHS wealth indices exhibit anomalous rankings.

One additional issue that has been lamented in some contexts is that the way
in which these indices are typically calculated precludes the use of traditional
inequality measures. One might think that if it makes sense to talk about inequal-
ity in incomes or wealth, it would certainly make sense to think about inequality
in asset holdings (McKenzie, 2005; Bhorat and van der Westhuizen, 2013). Never-
theless, the manipulation of traditional indices is not a viable strategy (Witten-
berg, 2013): a different approach is needed. As we show below, it is when we
consider the particular problems of calculating inequality measures with dummy
variables that many problems with the creation of asset indices crystallize. How-
ever, we show that these problems are not insuperable. Indeed, an approach due
to Banerjee (2010) for dealing with multidimensional inequality can be used to
create such asset indices, as we will show below.

We show that this approach is easy to implement and we apply it to South
African data. This provides a new perspective on the evolution of South African
inequality which is somewhat at odds with the literature measuring inequality
with money-metric approaches. We think it is likely that the asset approach
reveals genuine improvements over time, although the reduction in inequality is
unlikely to be as dramatic as the Gini coefficients calculated on the asset indices
suggest. We think that more detailed asset inventories would moderate some of
the conclusions. Indeed, one of our key points is that asset indices need to be
approached with some caution—churning out “wealth indices” in semi-
automated ways, without considering in detail what the individual scores suggest,
is likely to be problematic.

The plan of the paper is as follows. In Section 2, we provide a very brief over-
view of the theoretical literature dealing with asset indices. We follow on by enun-
ciating several principles for the creation of such indices in Section 3. We refer to
these as “principles” since our approach is not fully axiomatic. Our approach is
more heuristic—investigating what happens when we apply different approaches
to simple data and considering whether the answers make sense. We do this in
Sections 4-6, where we consider first the case of a single binary variable and then
we progressively consider more complicated cases. In each case, we consider both
the index itself and what it might mean to estimate inequality with it. Having set
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out what we consider to be a defensible approach, we turn to applying it to DHS
data in Section 7. Finally, we consider what assets may tell us about the evolution
of inequality in South Africa from 1993 to 2008.

The chief contributions of our paper to the literature are both negative and
positive. On the negative side, we show that there are anomalies embedded deep
in the predominant approaches for creating asset indices, which users should be
aware of before blithely adopting them. On the positive side, this paper: (1)
describes how to construct an asset index that is internally coherent; (2) shows
that inequality measures on this index are well defined and have reasonable inter-
pretations; (3) provides some perspective on the “art” of index construction; and
(4) provides a fresh perspective on South African inequality.

2. LITERATURE REVIEW

McKenzie (2005, p. 232) suggests that the idea of using the first principal
component of a set of asset variables as an index for “wealth” has been around in
the social science literature for a long time. Its use, however, has become common
only after the publication of Filmer and Pritchett (2001) and the subsequent
adoption of the method in the release of the DHS “wealth indices” (Rutstein and
Johnson, 2004). The basic idea of principal components is to find the linear com-
bination of the asset variables that maximizes the variance of this combination.
More formally, if we have k random variables «y, ..., a;, each standardized to be
of mean zero and variance one, the objective is to rewrite these as

ar=v1 Ay tvipdo+ ..+ A,

02=V21A1+V22A2+ . +V2kAk,

(1
ap=vi1 A1 tvipdr+ ...ty Ay,

where the A; are unobserved components, created so as to be orthogonal to each
other. Writing this in vector notation as

a=VA,

it follows that the covariance matrix (here equal to the correlation matrix R) is
given by

E(aa’)=E(VAA'V'),
R=VOV/

where ®=FE(AA’). Note that ® is diagonal since the unobserved components are
assumed to be orthogonal to each other. We need to impose some normalization
in order to get a determinate solution. Let @ be the matrix of eigenvalues and V
the orthonormal matrix of eigenvectors, and assume that V is ordered so that the
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eigenvector associated with the largest eigenvalue is listed first. We can then solve
for A, to obtain

A=V'a.
In particular,
(2) Ai=vai+var+ ... +vag.

We will refer to this as the PCA index. By assumption, var(4;)=4;, the first
eigenvalue, and we can show that no other linear combination of the a; variables
will achieve a greater variance (Wittenberg, 2009, pp. 5-6).

If the asset variables ¢; do not have unit variance and zero mean, they are
first standardized, so that the equation for the first principal component will be
given by

ar—a a—a ap—a
A]:V”( ! 1)+v21< 2 2)+...+Vk1< k k)
S S S
(3) 1 2 k

Vi1 V21 Vil
=—aqt—mt...+—a—c,
S 52 Sk

where the coefficients v;; are the elements of the eigenvector v, associated with the
largest eigenvalue 4; of the correlation matrix R of the g, variables. The constant ¢
is the weighted sum of the means, which ensures that 4, has a zero mean.

The use of the first principal component was defended by Filmer and Pritch-
ett (2001) on a “latent variable” interpretation of equations (1): A4; is whatever
explains most of what is common to aj, o, ...,a; and it makes most sense to
think of this as “wealth.” Other authors have taken this formulation more seri-
ously and have suggested that other procedures, such as factor analysis, be used
to retrieve the common latent variable (Sahn and Stifel, 2003)." Although the pro-
cedure produces a different index than the PCA one, in practice the indices calcu-
lated by both approaches are highly correlated, particularly since authors using
this approach seem to restrict themselves to extracting only one factor and eschew
the “orthogonal rotations” that produce arbitrarily many solutions.

Reviews of the procedure have focused on several issues. First, if the assets
are measured mainly through categorical variables, then the index defined
through equation (2) is intrinsically discrete. The more assets and the more
integer-valued variables (e.g. number of rooms) that are included in the index, the
smoother the resulting index will be and the better will be its potential to differen-
tiate finer gradations of poverty (McKenzie, 2005). Second, if categorical varia-
bles with multiple categories are included (e.g. water access), then the resulting
group of dummy variables will be internally correlated with each other in ways
that will influence the construction of the index. The more categories, the more
dummy variables and the more this group influences the overall index. As a result,
some authors have used multiple correspondence analysis instead (Booysen et al.,

"For a more detailed discussion of the factor analysis approach, see Wittenberg (2009).
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2008). Unfortunately, it cannot accommodate continuous variables. In practice,
the PCA index is also highly correlated with the MCA index. An additional point
is that some of the categories will inevitably feature as “bads” and so should defi-
nitely receive a negative weight (Sahn and Stifel, 2003). This is, however, different
to the cases that we consider later, where “goods” get assigned negative scores.

A third issue which has received some attention is whether or not the index
should include infrastructure variables (such as access to water and sanitation).
Houweling et al. (2003) tested the PCA index rankings for sensitivity to the assets
included. They were concerned about the fact that the infrastructure assets might
have independent effects on the outcome of interest, in particular child mortality.
They show that the rankings change somewhat as some of the “assets” are
stripped out. Thus there are important judgments to be made in deciding which
assets to include or exclude in an asset index.

Several authors have tried to validate asset indices against external bench-
marks. We have already referred to the review article by Filmer and Scott (2012).
They found that different techniques for constructing asset indices tended to get
results that were highly correlated with each other, but in some cases differing
from the rankings implied by per capita consumption. This is not thought to be a
problem in principle, since it is possible that assets may be a more reliable indica-
tor of long-run economic well-being. They may also be measured with less error
(Filmer and Pritchett, 2001; Sahn and Stifel, 2003).

One noteworthy finding in Filmer and Scott (2012) is that urban-rural differ-
ences tend to be more marked when using asset indices than when using per capita
expenditure. Consumption/expenditure is felt to be a better indication of longer-
run money-metric well-being than income, and thus the high aggregate correla-
tion between asset indices and consumption is not that surprising. But this makes
the sharp urban-rural divergence between these two measures noteworthy. It
could be due to the fact that wealth is more concentrated than consumption, but
perhaps it is also due to the fact that many of the household durable goods that
make up asset schedules (e.g. televisions and refrigerators) require electricity,
which tends to be more accessible in urban areas. Indeed, we have argued that
both principal components and factor analysis will tend to extract an index which
is a hybrid of “wealth” and “urbanness” (Wittenberg, 2009). We will show below
that the asset index values rural assets (in particular, livestock) negatively, thus
making rural asset holders look poorer than they should. We will suggest that the
urban-rural differences are actually exaggerated by the indexes.

3. PRINCIPLES FOR THE CREATION OF ASSET INDICES

Intuitively, all the justifications for the creation of an asset index rely on the
idea that higher asset holdings should convert into a higher index number and,
conversely, a higher index number should imply greater wealth. This is a simple,
yet obvious, internal consistency requirement. We shall refer to this as the
monotonicity principle. In order to outline this more rigorously, we first define
what we mean by an asset and an asset index.

© 2017 UNU-WIDER
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We define assets as goods that provide (potentially) a stream of benefits. An
asset variable 4; will be a random variable such that g; is either the quantity or
the value or the presence/absence of the asset. This excludes “bads.” We also
therefore do not allow a; to be negative.

Definition 1. Let (aj,az,...,a;) € R be a vector of asset holdings. The func-
tion A : RY — R defined for all possible asset holdings is called an asset index.

Typically, we will restrict attention to linear asset indices, that is, indices that
can be written in the form A(a;, aa, ..., ax)=via; +vaar+ ... +viay.

Principle 2. Let A(ai,az,...,a;) be an asset index. The asset index is
monotonic if and only if

(ar,az,. .. ar) > (a,d5,...,a;) = Aay, a2, .., ar) > A(a;, a3, . .., af).

Note that this is a fairly weak condition. It does, not, for instance, rule out
“inferior” assets. For instance, if we had an asset schedule that listed different
types of stoves—for example, electric, paraffin, coal, or gas—the corresponding
“ownership” vectors might be recorded as (1,0,0,0), (0,1,0,0), (0,0,1,0) and
(0,0,0,1), respectively. Since none of these vectors is numerically bigger than the
other, there is no restriction on how the asset index should rank them either.
However, if these are not recorded as mutually exclusive categories, then an indi-
vidual that owned both an electric stove and a gas stove should receive a higher
asset index than one that owns only an electric stove.

The second principle that we require is that the index must be ratio-scale,
that is, it must have an absolute zero. This is indispensable if we want to calculate
inequality measures on the index, since it is not valid to calculate “shares”
(required to construct, for instance, the Lorenz curve) if the variable is not ratio-
scale. It implies in particular that the index must be able to recognize individuals
or households that own nothing.

Principle 3. Let A(ay,an,...,ar) be an asset index. The asset index has an
absolute zero if and only if

Obviously, this principle is violated by all of the current asset indices, except those
that simply sum up the number of assets. Nevertheless, it is sensible to maintain
that if the notion of “asset holdings” is to have any meaning, it is only in relation
to individuals that do not have any. Even for purely ranking exercises, it is concep-
tually necessary that it makes sense to define the “have-nots” and that they should
rank at the bottom.

Assuming that the previous two principles hold, it then makes sense to con-
sider inequality measures on the space of asset index measures.

Principle 4. We will say that the asset inequality measure I is robust if it can
be applied to asset vectors of dummy variables as well as to continuous ones.
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Robustness is not a conceptual requirement, but it is desirable nonetheless,
given that the asset information is typically dummy variable based. Theoretically,
there is no reason why one should not construct different types of measures for
different types of data. It is, however, much simpler if the approach can accom-
modate these differences. One big advantage of robust measures is that we know
what the measures mean when the underlying data are of the continuous type
that are treated in standard social welfare accounts. When these measures are
applied to dummy variables, however, the interpretation becomes more complex.
Robustness in this case means that the “standard” and “non-standard” treat-
ments are part of the same continuum, so that if the measurement of the variable
were to improve over time, we would only need to tweak our approach rather
than switch completely. It is easier to see what this means by turning directly to
the simplest case of all.

4. ONE BINARY VARIABLE

Consider first the case where we have precisely one binary variable, for exam-
ple, we know whether or not the respondent owns a television set. Note that in
this case the only possible “asset index” is the variable itself. Note also that we
cannot analyse these data “from first principles” according to the typical axioms
of inequality measurement, since these types of data will not support the
“principle of transfers”—it is impossible to take away an asset from person j and
give it to person i without them changing places in the distribution. Furthermore,
such a “trade” (by the principle of anonymity) would leave the distribution pre-
cisely unchanged—and ratio-scale independence does not hold either, since rescal-
ing of the variable does not provide a valid asset distribution.

4.1. Standard Inequality Measures

Many of the standard inequality measures (e.g. Atkinson indices) will not
provide valid answers in the presence of zeroes. Nevertheless, some do, with the
Gini coefficient the most common example. It is instructive to consider what the
Gini of such a variable would measure. Assume that there are n, observations
with zeroes and n; ones. Let the proportion of ones be p, that is, p=", where
N=ng+n,. The Gini coefficient? is simply 1—p.

This is not an unattractive choice as a measure of inequality: if everyone has
the asset, then the Gini is zero; as p — 0—that is, the asset becomes concentrated
in a smaller and smaller group—the index approaches one. It is obvious that given
the paucity of information in the binary variable any “measure” of inequality
must be, in some sense, a function of p.

There are some alternatives. For instance, the coefficient of variation applied

to the binary variable would yield 11;)” This again yields a measure of zero when

p = 1, but in this case the index of inequality approaches +oco as p — 0.

2Wagstaff (2005) provides a discussion of “concentration indices” for the case where the dependent
variable is binary. This value for the Gini coefficient is a special case of his more general result.
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Obviously, both measures break down at p = 0. Indeed, in a world in which
nobody has the “asset,” it seems hard to define what inequality in the possession
of that asset would mean. It is also worth noting that both measures give mean-
ingful results only if the variable records the possession of a “good.” If the vari-
able measures a deprivation, it should be recoded first.

4.2. The Cowell-Flachaire Measures

An alternative to the cardinally based measures is the approach for ordinal
variables proposed by Cowell and Flachaire (2012). These require us to measure
the status of everyone in the distribution, where this is simply the count of every-
one of equal rank or lower (“downward” measure) or, alternatively, everyone of
equal rank or higher (“upward” measure). Both are expressed as proportions
of the population. The vector of status measures s=(sy, 52, . ..,sy) is then used to
calculate an inequality measure, relative to a “reference” status, which Cowell and
Flachaire suggest should be set to 1. The inequality measures then become:

L lzN:“—l if 00,1
o(e—1) Nl.zls" Y

1 N
—— logs; if a=0.
v

I,=

A virtue of this set of measures is that it is invariant to the way in which the ordi-
nal variable is “cardinalized,” since the cardinalization will not affect the ranking
of individuals in the distribution.

In the case of our binary variable, we obtain the following status values:

Value si (“Downward”) s; (“Upward”)
1 1 p
0 1-p 1

Consequently, the “downward” measure would be

(l_p) o .
o) syl it ao,

—(1=p)log (1—p) if a=0,

while the “upward” measure would be

P
L a(a_l)u} 1] if a#0,1,

—plogp if «=0.
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Figure 1. The Cowell-Flachaire , index as a function of p

Low values of o emphasize inequality at the bottom of the distribution—the
deprivation of those without the assets is felt more—while for o values close to
one what happens at the top is more accentuated. Note that when p=0orp=1,
inequality is zero. Indeed, by considering the second derivative of I, it is clear
that this measure of inequality has an inverse “U”-shaped curve, as shown in
Figure 1 for the case o = 0.

The variance of the distribution (which is also sometimes used as a measure
of inequality) also exhibits this sort of pattern, with a low index of inequality near
p=0andp=1.

4.3. The Meaning of Asset Inequality

The difference in the behavior of the two groups of inequality “measures,”
namely a monotonic decrease in inequality as p goes from near zero to one versus
inverse “U” shaped, raises fundamental questions about how we interpret the
contrast between the “haves” and the “have-nots.” In the Gini and coefficient of
variation interpretation, that gulf is the central feature of the distribution—so if
99 percent of the population are lacking the asset but 1 percent have it, that is the
most salient fact about the distribution. In the Cowell-Flachaire view, if most of
the population shares the deprivation, then most outcomes are very similar to
each other, that is, there is not a lot of inequality.

Which of these perspectives is right? Consider a “satisfaction with life” vari-
able that has been measured on a Likert scale ranging from 1 (very dissatisfied) to
5 (very satisfied). Let 99 percent of the population record a “3” (i.e. neutral) but
let 1 percent rate above that. This variable could be dichotomized as a 0/1 binary
variable, with the “satisfied” responses scored as 1 while those below are recorded
as zero. This distribution probably should not rate as very unequal, so in this con-
text the Cowell-Flachaire measure seems more reasonable than the equivalent
Gini. Note, however, that the Cowell-Flachaire measure is invariant to linear
translation—that is, we would get the same measure whether 99 percent
responded “3” and 1 percent “4” or whether 99 percent answered “4” and 1
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percent “5,” or even 99 percent “1” and 1 percent “5.” Indeed, the reason why
these all give the same distributional measure is that the conversion of the under-
lying phenomenon into a cardinal measure is arbitrary.

The central question is therefore to what extent the binary variable is an arbi-
trary coding of the underlying distribution. The crucial difference is not so much
what the “1” codes for (since that could stand for almost any value), but whether
the “0” can be thought of as absolute. Indeed, as we noted in the previous section,
the Gini coefficient is sensible only if the variable is ratio-scale, that is, if the zero
is absolute. The reason why the Gini scores inequality so highly when p is low is
that the gulf between having nothing and having something is enormous. This is
true, however, only if the “0” is really nothing and “1” signals the real possession
of an asset (e.g. a car). Some of the variables typically used in the construction of
asset indices need to be thought about very carefully in this context. For instance,
a dummy variable for “tiled roof” obviously really measures the presence or
absence of a “tiled roof.” Nevertheless, the absence of a tiled roof does not imply
the absence of all roofs; whether or not the gap between owning a thatched roof
and a tiled roof is as vast as the gap between having nothing and having some-
thing is debatable.

Nonetheless, many of the assets do measure material gaps—ownership of a
car or of a television are examples. Some infrastructure variables arguably also
satisfy this criterion. The presence or absence of water in the house may be such a
salient difference that the “0” really denotes a key absence. For variables such as
these, the Gini measure seems closer to our intuition of how we would think
about “asset inequality.”

We take two points away from this discussion. First, one needs to think quite
carefully about what variables one wants to include in one’s measure of “asset
inequality.” If the variables in question are, at best, ordinal quality-of-life meas-
ures (e.g. “tiled roof”), then the appropriate “inequality measure” needs to be an
ordinal one, like the Cowell-Flachaire approach. Second, if the binary variable
really captures the presence or absence of a real asset, then the behavior of the
Gini coefficient accords more closely with our intuition of “asset inequality.”
Nevertheless, we accept that this is a judgment issue and that different analysts
might come to different conclusions.

5. Two BINARY VARIABLES

We now turn to consider the case in which we have two binary variables.
We could obviously analyse both variables separately, but we might want to com-
bine the information to arrive at some overall measure of “asset inequality.”
There are several potential ways of doing this. First, we could combine the two
variables into one scale (an “asset index”) and then apply some inequality
measure to that scale. Depending on whether we think of the scale as giving us
cardinal or ordinal values, we could use either a standard inequality measure or
the Cowell-Flachaire ordinal measures. Second, we could utilize some of the
approaches in the “multidimensional inequality” literature.
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5.1. Some Preliminaries

First, however, we will rehearse some of the issues that make the two variable
case more complicated. To make the discussion more precise, let us presume that
the empirical information on the two binary variables X; and X, is contained in
the following matrix:

0

1

) X=[x1 x]= 0
1

where 0, is the n; null vector [0,0,...,0]" and 1, is the n; vector of ones
[1,1,...,1]". Let N=an, and let p; =" p,=""" and pj,="%; that is, p is
J

the proportion of the population that owns asset 1, p, is the proportion that owns
asset 2, and p, is the proportion owning both. Without loss of generality, let us
assume that p; > p,, that is, the second asset is rarer in the population than the
first.
Besides the general case, we will also consider the polar cases:
e special case 1—
nmy=n3=0, that is, x;=x,=[0,, 1,,] with pj=p,=p1,; and
e special case 2—
n1=n4=0, in which case x;=1-x, with p;=1-p,, and p;»=0.

What distinguishes the cases is that the correlation between the two variables is
positive in the former, while it is negative in the latter. The literature on multidi-
mensional inequality measurement speaks about a “correlation increasing
majorization” (e.g. Tsui, 1999, p. 150). Intuitively, the second case, in which every-
one has an asset, should be less unequal than the first, in which some people have
nothing and some have everything. In general, we would like a measure of
inequality that is true to that intuition.

We now turn to the first method, that of combining the two variables into
one scale.

5.2. Creating an Asset Index

As noted above, one of the most common ways of creating an asset index is
by means of principal components. Applying the PCA formula mechanically, we
can derive the values of the asset index in terms of py, p,, and pi; (see Appendix
A.1 in the online supporting information; in particular, the table). Several insights
follow from an examination of those formulae. Trivially, since the mean of the
variables (by construction) is zero and they include positive and negative values,
we cannot use traditional inequality measures on these values. Second, however,
the range of the index is a function of the ranges of the standardized variables X

and X,. Those are of the form 1;%-1— lf—]pl These are unbounded near zero and

© 2017 UNU-WIDER

716



Review of Income and Wealth, Series 63, Number 4, December 2017

one and follow a “U” shape, with a minimum at p;= % As an “inequality
statistic,” the range (and hence dispersion) of the asset index therefore works
inversely to the Cowell-Flachaire statistic for the univariate case. It is unlikely to
communicate useful information about real inequality in the distribution of
assets. This is the contrary to the intuition, expressed for instance by McKenzie
(2005), that the dispersion of the index could be a measure of inequality.

A third point emerges from the fact that the “weight” assigned to asset 1 is
the sign of the correlation coefficient between the two standardized assets, which
is negative if pj» < pip». Indeed, whenever p1y < p1p2, the asset scores give the fol-
lowing ranking: (1,0) < (0,0) and (1,1) < (0, 1); that is, a person who has the
more common asset is always ranked below a person who does not have the asset
(see the second column of the table in Appendix A.l, in the online supporting
information). How can this possibly make sense? The problem arises from the
fact that the principal components analysis correctly isolates the negative correla-
tion between the two assets. But the PCA procedure is intended to isolate what is
common to both; this quandary is resolved by interpreting x; as a “bad” instead
of a genuine asset. Given the philosophy of the PCA approach this is understand-
able, but it is problematic in this context nonetheless.

Indeed, it is not difficult to construct examples where the first asset becomes
such an intense “bad” that a person having no assets gets a higher score than an
individual with both assets. We show one example in Table 1. Indeed, whenever
1—p1 < pa < p1, the PCA rankings will produce such a perverse outcome. Table 1
also shows that the principal components method is not unique in this regard: the
most popular alternatives, namely factor analysis (with one factor) and multiple
correspondence analysis, produce precisely the same perverse ranking.

Is this case relevant for empirical analyses? There are, in fact, many practical
examples where “assets” acquire negative weights in principal components proce-
dures. In the South African case (as shown below), ownership of cattle is fre-
quently negatively correlated with the ownership of other asset types, mainly
because cattle are a typically “rural” asset while the other assets require a connec-
tion to the electricity grid.

Given these issues, it would be wise to restrict the construction of these type
of asset indices to situations where the assets are positively correlated—although
that would be a non-trivial limitation. Nevertheless, even in these cases, the ques-
tion of how to deal with the negative values created by the estimation process
remains. One possible response would be to add, to all index values, a positive

TABLE 1
AN EXAMPLE WHERE CONVENTIONAL ASSET INDICES PRODUCE PERVERSE RANKINGS

Assets Proportion PCA FA MCA
(1, 0) 0.5 —1.0403 —0.53318 —0.89322
(1, 1) 0.2 0.40312 0.20661 0.34613
(0, 0) 0.1 0.50277 0.25769 0.43170
0, 1) 0.2 1.9461 0.99748 1.6711

Example: p1=0.7, p2=0.4, p12=0.2,p12 < p1p2
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constant that is big enough to ensure that only non-negative values remain. Lin-
ear translations of this sort have been used in some cases (Sahn and Stifel, 2000;
Bhorat and van der Westhuizen, 2013). The problem is that while these shifts
maintain the rankings, the Gini coefficients are not invariant to such transforma-
tions. Indeed, Lorenz dominance on subgroups can be reversed (see Wittenberg,
2013).

5.3. Creating an Ordinal Scale

With two binary variables, there are four possible outcomes, that is, four pos-
sible values for any combined scale. If we can rank the value of the two assets—
for example, if having the x; asset is preferred to having the x, asset—then we
know that (1,0) > (0, 1). But then we can rank all outcomes in the obvious way,
that is, (1,1) > (1,0) = (0,1) > (0,0). Even if we cannot cardinalize these bun-
dles, we could use the Cowell-Flachaire approach to create inequality measures.
Indeed, one of their examples is precisely of this form.

One problem with this approach is that it does not take into account the cor-
relation between the two assets. Consider, for instance, two assets that can be
ranked (e.g. ownership of a car versus ownership of a television) and assume that
precisely half of the population have cars and the other half have televisions.
Assume now that we “redistribute” the televisions to those who have cars, that is,
we now have half of the population that have cars and televisions and half that
have nothing. The Cowell-Flachaire measures will report the same inequality
measures before and after, despite the fact that the distribution has become a lot
more unequal.

Additional problems arise if there are more than two binary variables,
because we would then need to know how owning two lower-ranking assets (e.g. a
television and a cell phone) rank relative to owning only the most desirable asset
(e.g. a car). There are 2 possible bundles with k binary variables and we would
need to be able to rank all of them. In practice, with more than two variables this
approach is likely to be intractable. Consequently, we will not pursue these Cow-
ell-Flachaire measures further.

6. THE MULTIDIMENSIONAL CASE
6.1. The Multidimensional Gini

The literature dealing with multidimensional indices tends to approach the
issue axiomatically. However, currently this theoretical work does not extrapolate
well to contexts in which multidimensionality is defined by vectors of binary vari-
ables. Given that such situations are very much the context of this paper, we use
the multidimensional Gini proposed by Banerjee (2010). As the approach is based
on the Gini coefficient, it can cope better with zeroes than approaches based on
generalized entropy measures (e.g. Tsui, 1999).

The procedure harks back to the first approach, that is, creating a linear
combination of the variables on which the Gini coefficient is then estimated.
Again, the weights on the components are given by the elements of an eigenvector
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of a cross-product matrix, but in this case the variables are not demeaned, so that
the moments, as it were, are calculated around zero rather than the mean. As a
result, the weights are compelled to be positive. Banerjee proves that when applied
to standard continuous non-negative variables, this approach provides an inequal-
ity index that satisfies all of the key axioms, but also shows increasing inequality
if a “correlation increasing transfer” occurs.

More concretely, Banerjee suggests that variables should first be divided by
their mean. In our case, transforming the original data matrix X (given in equa-
tion (4)), we obtain

0"1 01‘11
L0
Plnz "
A= 0. L |
3 P2n3
1 1
L Piny  P2ny |

where & should be interpreted in the obvious way as the n; column vector

Iy
containing ,}] in every element. It follows that
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p 1
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A (non-normalized) eigenvector associated with the maximal eigenvalue is

/
[Pz—m +4/ (p2—p1)*+4p%, | ]

2p12

provided that pj, # 0. If p;,=0, then the maximal eigenvalue is iz with associated
eigenvector [0 1]. The “index values” (up to a multiplicative constant) for this
case are given in Table 2.

If p12 # 0 (and still assuming that p, < p;), we can show that the index will
order the asset bundles as (0,0) < (1,0) < (0,1) < (1,1). However, when
p12=0—that is, the vectors of asset holdings are completely orthogonal-—then the
first asset gets a weight of zero, that is, y(0,0)=y(1,0)=0. This does not create
perverse rankings, but it does mean that asset one is completely ignored. This
illustrates why Banerjee in his proofs requires that there be at least one individual
that owns positive quantities of all assets. In this context, this would require
p12 > 0. This is undoubtedly a limitation, although one not nearly as severe as the
requirement that the assets be positively correlated.

Table 2 also gives the Gini coefficient for this case. In fact, we show in the
online Appendix (Section A.2) that the formula
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®) G=1-pr—(p1+p2—2p12)(p1—p12)ur —pr2(p1—p2)u1,
where
(©6) w=—2>_

P1y1tpay2

is valid for any asset index which scores the assets as y(0,0)=0, y(1,0)=y,
(0, )=y, y(1,1)=yp;+y,. The formula is interesting, because it shows that 1 —p,
is an upper bound for the Gini, as the expressions in brackets in the third and
fourth terms both have to be non-negative. So the proportion of the less common
asset is the key determinant for inequality overall. In the extreme case where
p1=p2=p1>—that is, where the society splits into two groups, one which owns
nothing and one which owns both assets—the upper bound is reached. Indeed, it
is also reached in the case we have ruled out, where p;>,=0, because then asset 1 is
scored as having value zero, that is, #;=0. It turns out that the behavior of the
asset index and the associated Gini coefficient depend critically on p;,. The rarer
P12 1s, the more the procedure down-values the first asset. This is accentuated by
the size of the gap between p; and p,.

One interesting special case is if p;=p,. Then the Gini approaches 1 —2p, as
p12 — 0, that is, it treats the two assets equally and inequality gets measured
according to who has any assets versus who has none. This is an attractive prop-
erty, although the probability of finding such a balanced relationship in any “real
world” application is zero. Nevertheless, the limiting value of 1—2p; serves as a
lower bound to the Gini coefficients that can be achieved.

6.2. Some Provisional Lessons

The key lesson is that the process of deriving weights for the asset index
needs to be handled with care in any analysis of asset well-being and, in particu-
lar, in the analysis of asset inequality. The conventional PCA, FA, or MCA proce-
dures can yield negative weights. Simply dropping these variables from the

TABLE 2
INDEX VALUES FOR THE UNCENTERED PRINCIPAL COMPONENTS PROCEDURE OF BANERJEE

Bundle Probability Value (y) Case 1: p1=p»
(0,0) L=pi=p2+tpi 0 0

(1,0) —pia p—pi+ 2[(:111221;1?1)1+4Pf3 p%

(0,1) P27 P12 ,,% 1%

(1L P12 M—;l’l)% +pLz p%

Gini 1=p2—(p1+p2—2p12) (P1 —p12)ur —p12(p1—p2)uy 1721’2+2p]27%

p=pi+y/ (p2—p1) +4p,
(=it 2=p P+ +2p12)

where u; =
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analysis (if they are genuine assets) is likely to skew the results in other ways. The
uncentered PCA (UC PCA) of Banerjee can handle these cases, provided that
ownership of these assets is not completely orthogonal to that of the other assets.
Nevertheless, in situations where the overlap of asset holdings is relatively small,
these unconventional assets may be down-valued. It seems important to inspect
both the asset scores and the resulting rankings before doing any substantive
analysis. These are not mere theoretical niggles. We have focused at length on the
measurement of asset inequality, and have shown that these same limitations of
PCA, FA, and MCA procedures lie behind their inability to provide useful
applied measures of asset inequality. In contrast, UC PCA can provide such
measures.

In the next two sections, we further explore these lessons using two South
African case studies. In the next section, we use South African DHS data to inter-
rogate the asset scores that result from all of the latent variable approaches
including UC PCA. We find examples of negative asset values for each of PCA,
FA, and MCA. The UC PCA approach does not produce these negative values
and we are able to compare the vectors of values across these techniques and go
on to show the potential costs of simply dropping such negative values in analysis
using PCA, FA, or MCA.

This analysis affirms that while the UC PCA approach has some limitations,
it has much to recommend it. In the context of this paper, its greatest strength is
that it results in an asset index that contains only non-negative values. It therefore
satisfies the standard axioms of inequality analysis and can be used for inequality
analysis. We show this briefly in Section 7, and in Section 8 we implement a fuller
example of this by exploring changes in asset inequality in South Africa in post-
apartheid South Africa.

7. APPLICATION TO THE DHS WEALTH INDICES

A 1998 Demographic and Health Survey (MEASURE DHS, 1998) allows us
to apply the above discussion in the South African context in a way that explores
the similarities and differences between the UC PCA approach on the one hand,
and the PCA, FA, or MCA approaches on the other. The general approach to the
creation of the DHS wealth indices is outlined in the paper by Rutstein and John-
son (2004). As many assets as possible are used, including country-specific ones.
The actual coefficients underlying the index can be accessed on the DHS website.?
For the South African case, the coefficients on several key variables are shown in
the first column of Table 3. Note that these are the coefficients on the untrans-
formed variables, that is, v;/s; (see equation (3)). The most important point for
our purposes is the fact that the coefficients on the two livestock variables (pos-
session of a donkey or horse, and possession of sheep or cattle) are both negative.
It follows that individuals that have no assets will rank above individuals that
have only donkey and/or cattle. Indeed, if we search for the poorest individuals
(according to the wealth index), they invariably own livestock.

3At http://www.dhsprogram.com/topics/wealth-index/Wealth-Index-Construction.cfm
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TABLE 3

CONSTRUCTING ASSET INDICES USING THE 1998 DEMOGRAPHIC AND HEALTH SURVEY FOR

SOUTH AFRICA

1) (2 3 “ (5) (6) (7)
Variables DHS WI UC PCA UC PCA2 PCA PCA2 MCA FA
Water in house 0.185 0.209 0.565 0.708 0.707 0.329 0.289
Electricity 0.181 0.0814 0.220 0.663 0.657 0.300 0.265
Radio 0.097 0.0515 0.140 0.467 0.477 0.206 0.113
Television 0.165 0.101 0.273 0.678 0.680 0.312 0.301
Refrigerator 0.184 0.136 0.369 0.735 0.738 0.343 0.413
Bicycle 0.097 0.600 1.401 0.490 0.501 0.233 0.137
Motorcycle 0.166 52.57 0.788 0.821 0.412 0.193
Car 0.172 0.490 1.202 0.766 0.777 0.368 0.320
Rooms NA* 0.0176 0.0482 0.0977 0.105 CAT 0.0221
Telephone 0.195 0.378 0.989 0.813 0.818 0.387 0.397
PC 0.207 4.984 14.42 0.967 0.982 0.481 0.296
Washing machine 0.203 0.654 1.696 0.870 0.877 0.421 0.452
Donkey/horse —0.089 2.836 4.523 —0.293 —=0.118  —0.0849
Sheep/cattle =0.115 0.291 0.509 —0.375 —0.156  —0.0909
Infrastructure vars Y
Constant Y N Y Y Y Y Y
Observations 12,136 12,136 12,136 12,136 12,136 12,136 12,136

Notes: *The DHS wealth index uses occupants per room rather than number of rooms.

DHS WI, DHS wealth index; UC PCA, uncentered principal components analysis; PCA,

principal components analysis; MCA, multiple correspondence analysis; FA, factor analysis.

In order to investigate this further, we categorize individuals in terms of their
possession (or otherwise) of “real” assets. We exclude building materials from the
list and include only water piped inside the house and access to electricity. The list,
with the corresponding summary statistics, is shown in Table 4. The minimal possi-
ble asset holding corresponds to one room with nothing else. Households in the

TABLE 4

MEANS OF THE ASSET VARIABLES USED IN THE SOUTH AFRICAN DHS

Mean Robust Standard Error
Water in house 0.391 0.015
Electricity 0.652 0.017
Radio 0.803 0.006
Television 0.578 0.012
Refrigerator 0.507 0.014
Bicycle 0.170 0.006
Motorcycle 0.019 0.002
Car 0.252 0.011
Rooms 2.213 0.021
Telephone 0.282 0.012
PC 0.064 0.005
Washing machine 0.214 0.012
Donkey/horse 0.024 0.003
Sheep/cattle 0.100 0.007

Notes: Estimates are weighted to the population using the sample weights. Standard errors
adjusted for clustering. All variables are binary except for “Rooms.”
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DHS with such minimal assets could have a large range of “wealth index” numbers,
depending on the building material of which their accommodation was made. Inter-
estingly, however, 13 percent of individuals who had a higher asset holding (typi-
cally owning livestock as well as having more rooms), nevertheless had a lower
wealth index than the mean score among those with no moveable possessions.
Indeed, the richest person among those with no water in the house, no electricity,
one room, and no durables was better off (according to the wealth index) than 47
percent of individuals that had at least something on top of one room.

In order to explore the relationship between livestock ownership and other
forms of assets further, we constructed a series of asset indices using our more
restrictive list of assets. Besides the uncentered principal components index
(labelled UC PCA in Table 3), we also constructed indices using PCA, MCA, and
FA. The first point to note is that the negative weighting on livestock ownership
is a feature of each of the latter three approaches. The coefficients shown in Table
3 are those on the untransformed variables, that is, before any standardization.

The second point to note is that the UC PCA also has its bizarre feature: in
this case, it is the extremely large implied coefficient on ownership of a motor-
cycle. The reason for this is that the coefficient is v;/y;, where v; is the score from
the principal components calculation and g; is the mean of the variable. We divide
by u; due to the standardization suggested by Banerjee. As Table 4 shows, motor-
cycles are owned by very few South Africans, and consequently the score becomes
inflated in ways which are unlikely to reflect their real asset status. Consequently,
we decided to drop this variable and recalculate the index (the results are shown
in column 3). Ownership of a personal computer now gets the highest score,
although its magnitude is not as outlandish as that for the motorcycle.

Similarly, we also recalculated the PCA index without the livestock variables,
to provide the fairest comparison between the two techniques. This, however, did
not have much of an impact on the remaining coefficients, as can be seen by com-
paring columns 4 and 5 in Table 3. It will, of course, remove the anomalies noted
earlier. Individuals owning livestock will now appear indistinguishable from indi-
viduals owning nothing. What is the impact of this for the identification of
deprivation?

One simple check is to divide the population up into quintiles according to
the two indices and see how well they compare. Table 5 performs that analysis.

TABLE 5
COMPARING THE QUANTILES OF THE UNCENTERED VERSUS THE UsuaL PCA

Quantiles of PCA 2

Quantiles of UC PCA2 1 2 3 4 5 Total
1 2,368 482 0 0 0 2,850
2 530 1,145 748 0 0 2,423
3 34 429 1,277 586 0 2,326
4 0 66 275 1,463 399 2,203
5 175 104 55 84 1,912 2,330
Total 3,107 2,226 2,355 2,133 2,311 12,132
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TABLE 6
CORRELATIONS BETWEEN THE DIFFERENT ASSET INDICES

DHS WI PCA PCA 2 MCA FA UC PCA UCPCA 2
DHS WI 1
PCA 0.9435 1
PCA 2 0.9337 0.9974 1
MCA 0.94 0.999 0.9973 1
FA 0.9449 0.9968 0.9952 0.9959 1
UC PCA 0.3059 0.3862 0.3995 0.3956 0.362 1
UC PCA 2 0.6247 0.7391 0.7559 0.747 0.7234 0.4539 1

We see that there are some key differences. The starkest contrast is provided by
the 175 households which are rated in the bottom quintile according to the PCA
index but are rated at the top of the UC PCA. Looking at the means of the asset
variables, it emerges that all of them owned horses/donkeys, 76 percent of them
also owned sheep or cattle, and 75 percent of them also owned a radio. Ownership
of horses and/or donkeys is a significant asset according to the uncentered PCA.
Perhaps the coefficient is on the large side, but it is unlikely that households that
own both types of livestock should truly be ranked among the poorest of the
poor (the bottom 20 percent). Of course, the original PCA index would have
ranked many of these households below the “poorest of the poor” (given the neg-
ative value on those assets).

In Table 6, we present the correlation matrix between the different asset indi-
ces. Although we have used fewer assets in our version of the principal components
scores, they are still highly correlated with the wealth index released with the DHS.
The PCA, FA, and MCA approaches end up highly correlated. The two uncentered
PCA indices show much lower correlations. The first of these has very low correla-
tions with all the indices, since motorcycle owners receive such high scores that the
entire distribution is highly skewed (95 percent of all scores are below 8, whereas
motorcycle owners score above 50). The second shows correlations of 0.75 with the
PCA index that does not weight livestock negatively—but correspondingly lower
correlations with the others that maintained that negative weighting.

The obvious implication of all of this is that the standard asset indices will
tend to find higher urban-rural contrasts in poverty than the uncentered PCA.
This is shown clearly in Table 7. In each case, we have classified the bottom 40
percent of individuals as “poor” according to the DHS wealth index, the PCA 2
index and the second uncentered PCA index. It is clear that there is a strong
urban-rural poverty gradient. Nevertheless, the DHS wealth index accentuates
this contrast, while the uncentered PCA index finds more urban poverty and less
rural poverty. This should not be surprising given the negative valuation of rural
assets in the DHS wealth index and the strong positive valuations of urban
infrastructure.

Interestingly, calculating the Gini coefficient on the asset scores of the UC
PCA we find (in Table 8) strong asset inequality in South Africa in 1998, not dis-
similar to the magnitude of income inequality (Leibbrandt et al., 2010). Further-
more, as this table also suggests, there were strong inequalities within rural areas,
a finding that many South Africans will find plausible.
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TABLE 7
PROPORTION POOR IN DIFFERENT TYPES OF LOCALITIES, ACCORDING TO DIFFERENT ASSET INDICES

DHS PCA 2 UC PCA 2

Linearized Linearized Linearized

Standard Standard Standard
Localities Mean Error Mean Error Mean Error
Capital, large city ~ 0.098 0.013 0.146 0.014 0.198 0.015
Small city 0.178 0.024 0.220 0.021 0.275 0.022
Town 0.204 0.031 0.291 0.032 0.372 0.033
Countryside 0.720 0.020 0.648 0.019 0.597 0.016

Note: “Poor” defined as the bottom 40 percent in terms of the index.

8. ASSET INEQUALITY IN SOUTH AFRICA, 1993-2008

We now turn to consider the evolution of asset inequality in South Africa
using two nationally representative surveys conducted under the auspices of SAL-
DRU at the University of Cape Town. The first of these is the Project for Statistics
on Living Standards and Development (PSLSD), conducted in 1993, and the sec-
ond is the first wave of the National Income Dynamics Study (NIDS). These
studies have already been used to investigate changes in money-metric income
inequality over the period (Leibbrandt ez al., 2010). It has been found that over
this period, money-metric inequality started at very high levels and remained at
those high levels.

Both of these surveys are nationally representative general living standards
instruments that gathered detailed information on incomes, expenditures, and
assets, as well as education, health, and other dimensions of well-being. The liter-
ature on money-metric inequality has been useful in giving detailed attention to
the comparability of the incomes and expenditure in these two surveys over time
(Leibbrandt et al., 2010).

The two datasets provide good coverage of household assets. However, they
differ in asset registries. In total, 31 assets categories exist, of which the NIDS
contains 29 and the PSLSD contains 19. The NIDS does not include an electrical
kettle or the presence of a geyser in its asset register. Some of the assets not
included in the PSLSD are due to technological progress. Assets such as com-
puters and cell phones were not as prominent in 1993 as they are now and thus
were not included. Furthermore, the NIDS includes greater detail with regard to

TABLE 8
ASSET INEQUALITY MEASURED BY THE GINI COEFFICIENT USING THE UC PCA2 INDEX

Group Estimate Standard Error Lower Bound Upper Bound
1: capital, large city 0.566 0.009 0.549 0.583
2: small city 0.538 0.014 0.511 0.566
3: town 0.569 0.023 0.524 0.614
4: countryside 0.609 0.014 0.582 0.636
Population 0.623 0.007 0.610 0.636

Note: Statistics calculated using the DASP package.
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TABLE 9
AsSET HOLDINGS IN 1993 AND 2008

Over Mean Linearized Standard Error
electricity

1993 0.459 0.024

2008 0.779 0.020
pipedwater

1993 0.506 0.027

2008 0.697 0.025
radio

1993 0.811 0.008

2008 0.694 0.012
TV

1993 0.477 0.018

2008 0.703 0.017
fridge

1993 0.399 0.020

2008 0.609 0.020
motor

1993 0.247 0.016

2008 0.220 0.018
livestock

1993 0.110 0.011

2008 0.100 0.011
landline

1993 0.242 0.018

2008 0.143 0.015
cellphone

2008 0.807 0.011
phoneany

1993 0.242 0.018

2008 0.827 0.010

Source: 1993 PSLSD, 2008 NIDS wave 1.

transportation assets (such as motorcycles, boats, and donkey carts) as well as
agricultural assets (such as tractors, ploughs, and grinding mills), which are not
included in the PSLSD. However, the PSLSD has the advantage of not only
including ownership of assets but also the quantity of each asset owned.

In order to look at asset inequality over time, we need to calculate a pooled
index for the two periods first, so that we are using the same scores for the assets
in each period. This limits us to assets that were asked for in both periods. The
descriptive statistics presented by Bhorat and van der Westhuizen (2013) suggest
that there has been considerable progress over the period. Table 9 presents the sta-
tistics as calculated on our data.

One immediately evident issue is that the prevalence of landlines has gone
down as the availability of cell phones has become ubiquitous. If this measure-
ment issue is not addressed, it will result in a spurious decrease in assets over
time. Indeed, given the relative rarity of landlines in the later period, these would
become erroneously marked as valuable assets instead of as assets whose utility is
actually in decline. Consequently, we collapse landline and cell phone ownership
into an omnibus “any phone” variable. The coefficients on the assets implied by
our uncentered PCA asset index are given in Table 10.
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TABLE 10
COEFFICIENTS ON THE ASSET VARIABLES USED IN THE PooLED UC
PCA INDEX
electricity 0.515
pipedwater 0.536
radio 0.353
TV 0.655
phoneany 0.789
fridge 0.800
motor 2.265
livestock 3.170

When we use this asset index to construct Lorenz curves, we obtain the result
shown in Figure 2. The Lorenz curves show clear evidence that asset inequality
fell considerably, and this is confirmed by the Gini coefficients, which fell mark-
edly, from 0.47 in 1993 to 0.29 in 2008. As a reflection of the fact that these
Lorenz curves and Gini coefficients were estimated from the pooled UCPC mea-
sure, the pooled or Population Lorenz curve is plotted in the figure too.

The fact that asset inequality should have declined is not surprising given
that the statistics shown in Table 9 show strong increases in access to assets
between 1993 and 2008. This is not universally true—motor cars, for instance,
remain relatively rare. Nevertheless, the penetration of television, cell phones,
refrigerators, and electricity suggest that asset holdings have certainly increased.
By contrast, the money-metric measures suggest very little change. Part of the
problem, of course, is that if the whole distribution shifts upward by an equipro-
portionate amount of money, the measured money-metric inequality will remain
static. Note, however, that dummy variables cannot be rescaled in this way. The
way in which we measure asset inequality will make asset ownership more com-
mon at the bottom, leave it unchanged at the top, and thus reduce inequality.

It is also true, of course, that all measurements are contingent on the sched-
ules that are employed. One note of caution in this regard is appropriate. The
asset inequality measure for 1998 that we calculated for the DHS is significantly
higher than either the 1993 or 2008 measures that we have just considered. The
main reason for this is that the asset schedule for 1998 included assets such as
“personal computer,” which allowed a better contrast to be drawn between high
earners and the rest.* While we are sure that access to assets has spread and that
in this sense asset inequality has decreased, the magnitude of the initial level of
inequality and the size of the decrease are probably not as dramatic as suggested
by the Gini coefficients that we have reported.

9. CONCLUSION

In this paper, we have argued that asset indices can be interesting and power-
ful tools for analysing social trends. However, doing so in an unreflective and
automatic way is unlikely to provide useful insights. We have drawn particular

4Of course, the case of the motorcycle should remind us that some of these contrasts can be
overdrawn.
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Lorenz curves of UC PCA index
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Figure 2. Lorenz curves for the UC PCA index [Colour figure can be viewed at wileyonlinelibrary.com]

attention to the fact that the standard approaches often value access to a good
such as livestock negatively, implying that the household would be better off with-
out access to that good. Proceeding in this way, for instance, has obscured real
asset holdings in rural areas in the South African case. We go on to show how
this has led to an exaggerated sense of rural deprivation and a lack of apprecia-
tion for deprivation in urban areas. This is not just about South Africa. DHS
weights are available for a range of other African countries and these show that it
is common for there to be negative weights on rural assets such as landholding
and cattle.” There is a large literature showing that it is these very assets that are
stores of value or wealth in many rural African contexts, which seems to provide
strong support to the salience and importance of this point.

A related focus of this paper has been to link these problematic properties of
widely used asset indices to the limitations of these indices in measuring asset
inequality. So, the standard application of these indices may also have obscured
real inequality within rural areas. But this has been hard to ascertain up to this
point, as these indices do not allow for the measurement of asset inequality.

Our analysis has gone on to suggest that it is possible to create asset indices
in ways that allow the calculation of Gini coefficients. To that end, we have used
the method suggested by Banerjee for the calculation of “multidimensional Gini
coefficients” using continuous data. Our application suggests that the technique
can work well, provided that care is taken in ensuring that some rare assets do

SExamples include Burundi (2012), DRC (2013-14), Equatorial Guinea (2011), Eritrea (2002),
Ghana (2014), Mali (2006), Mauretania (2000-1), Morocco (2003-4), Namibia (2013), Niger (2012),
Rwanda (2014-15), Sierra Leone (2008), Swaziland (2006-7), and Zambia (2013-14).
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not distort the index. In general, then, whether researchers are using our proposed
approach to deriving an asset index and measuring inequality, we have shown
clearly in this paper that such indices should not be used without scrutinizing the
implied coefficients.

We have used nationally representative survey data from 1993 and 2008 to
derive an uncentered principal components analysis asset index for South Africa
spanning the initial 15 years of post-apartheid South Africa. We have used this
index to analyse how asset inequality has changed in South Africa between these
two years. We have plotted comparable Lorenz curves and derived comparable
Gini coefficients. The Lorenz curves show unambiguously that asset inequality
has declined sharply over time. The Gini coefficients give a sense of the extent of
this decline. This picture of falling asset inequality contrasts sharply with the
money-metric analysis of inequality over the same period. The latter narrative is
one of very high inequality in 1993 that does not fall over the post-apartheid
years. Substantively, our empirical work suggests that the money-metric approach
to inequality measurement in South Africa may have obscured the real progress
in large portions of the population and in important dimensions of inequality.

Still, this stark difference does prompt some reflections on the limitations of
the scope of our analysis in this paper. We have focused on the derivation of asset
indices and asset inequality from a binary view of assets: whether households do
or do not have access to them. Such are the data that we have in many developing
countries and, as a consequence, such asset indices are very common in the inter-
national literature; thus justifying the focus of the paper.

Nonetheless, this binary view of the world misses the complexity arising
from a more continuous approach. We cannot differentiate between households
that have many instances of an asset (such as TVs) and those that only have one.
Nor does it take account of the differing quality or values of the assets or the real
returns that they bestow on the household. In short, our “asset indices” fall con-
siderably short of true wealth indices.

Finally, it is worthwhile pointing out that “asset indices” are used toward
many different ends: trying to identify the poor and deprived; measuring the gap
between the rich and the poor; and ranking households in terms of their quality
of life. Measures such as the Cowell-Flachaire one are aimed at only one of these
objectives and perform well in that context. The fact that Cowell-Flachaire does
not perform as well in the situation that we analyse is not to deny that utility.
Indeed, it is too much to expect that one type of index could address all of the
issues listed and do so equally well. The same is true of the UC PCA index. It is
not a tool that will work in all contexts. Our point that asset indices should not be
used in an unreflective way also extends here: it is vital to think about what goes
into the index as well as how it is assembled.
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SUPPORTING INFORMATION
Additional supporting information may be found in the online version of this article at the
publisher’s web-site:

Appendix A Derivations

A.1 The PCA Index in the Case of Two Binary Variables

A.2 The Gini Coefficient for the Bivariate Case

Figure A.1: Calculating the Gini Coefficient in the Bivariate Case, where y(0;0)=0
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