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In this paper we demonstrate that the size distribution of the world income may be reasonably
approximated by a log-normal distribution rather then by a power law, as has previously been believed.
This result has been shown to be quite persistent as we move from 1985 to 2011.
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1. Introduction

With reference to the world income distribution, Di Guilmi et al. (2003) and
Furceri (2008) have lent support to a power-law distribution linking the GDP per
capita with the rank-size rule. In particular, in Di Guilmi et al. (2003), the GDP per
capita of countries between the 30th and the 85th percentiles of the distribution is
shown to follow a Pareto distribution over the period 1960–97. Furceri (2008),
instead, provides empirical evidence of regularity in the GDP per capita data for
175 countries, from 1980 to 2004, collected by the International Monetary Fund
(IMF) (World Economic Outlook (WEO), 2005). He shows that the “long-run”
(average) world income distribution can be well approximated by Zipf’s law.1

Results in both papers are derived through the ordinary least squares (OLS)
procedure.

As discussed in Clauset et al. (2009) and Urzúa (2011), the use of OLS for
testing Zipf’s law introduces systematic biases into the value of the exponent and
returns unsatisfactory answers because it gives no indication of whether the data
obey a power law at all. Indeed, several distributions, from the standard exponen-
tial to the log normal, may show linearity in their right tail on a Zipf plot, even if
they are not power laws.
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1The terms Pareto distribution and Zipf’s law (the latter is also known as rank-size distribution or
rank-size rule), after the two early researchers who championed their study, refer to cumulative
distributions with a power-law form. Since power-law cumulative distributions imply a power-law
form, Zipf’s law and Pareto distribution are effectively synonymous with power-law distribution. Zipf’s
law and Pareto distribution differ from one another in the way the cumulative distribution is plotted:
Zipf made his plots with x on the horizontal axis and F(x) on the vertical one, Pareto did it the other
way around (Newman, 2006, p. 4).
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The issue is important because only a few distributions are consistent with
Gibrat’s law of Proportionate Effect (Gibrat, 1931), which provides the classical
explanation for the empirical distribution of income. In particular, while the
log-normal distribution can be derived as an outcome of stochastic growth models
that rely on Gibrat’s law (Sutton, 1997), the Pareto distribution is not consistent
with it (Bottazzi, 2009).

This paper presents new evidence on the world income distribution. As in
earlier studies, we show that the distribution of income is right skewed but, as a
new result, we demonstrate that data distribute following a log-normal function
rather than a power-law formulation. We demonstrate this point using a para-
metric method to estimate the income distribution for about 170 countries
between 1985 and 2011 (IMF, WEO database, April 2013). For our analysis we
use the three-parameter generalized gamma (GG) distribution, which includes
the log-normal and the Pareto distributions as limiting cases (Kleiber and Kotz,
2003).

In the next section we present the database used for our analysis. The basic
characteristics of the GG distribution and our estimation results are discussed in
Section 3. Section 4 is devoted to assessment of the goodness of fit. Section 5
concludes.

2. Data Description and Basic Statistics

In our study the world distribution of income is measured in terms of GDP
per capita based on purchasing-power-parity (PPP). The unbalanced panel we use
has been taken from the IMF, WEO database.2 It contains selected macroeco-
nomic data series from the statistical appendix of the WEO report, which presents
the IMF staff ’s analysis and projections of economic developments at the global
level in major country groups and in many individual countries.

Most countries’ macroeconomic data presented in the WEO conform broadly
to the 1993 version of the System of National Accounts (SNA)3 and reflect infor-
mation from both national source agencies and international organizations. The
WEO database is created during the biannual WEO exercise, which begins in
January and June of each year, and results in a publication twice a year (April and
September).

Our analysis refers to the April 2013 country-level database, which is made
up of an average of 170 countries per year, over the time horizon 1985–2011. For
every year in the sample, Table 1 shows the number of countries in the panel,
some descriptive statistics, and the income concentration as measured by the
Gini coefficient. Not surprisingly, the income data exhibit positive skewness.
Moreover, for all the years in the panel, the empirical distribution of the world
income looks leptocurtic. The Gini index shows a quite large income gap even
though the inequality shows a slow tendency to decrease over the time horizon
under consideration. In the same period, the median and mean have been
increasing instead.

2http://www.imf.org/external/ns/cs.aspx?id=28 (accessed June 27, 2013).
3For details, see http://www.imf.org/external/pubs/ft/weo/2013/01/pdf/statapp.pdf.
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3. The GG and the World Distribution of Income

A positive random variable X is said to follow a GG(a, β, p) if its probability
density function (pdf ) is given by
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Here Γ(·) is the standard gamma function, βa = σ 2a2 is a scale parameter, whereas

a > 0 and p
a

a
= +μ

β
1

are shape parameters4 (McDonald, 1984; McDonald and Xu,

1995; Kleiber and Kotz, 2003). This parameterization was first introduced by
Amoroso (1925) as the family of GG distributions.

The GG is a fairly flexible family of distributions that includes many distri-
butions supported on the positive halfline as special or limiting cases (McDonald,
1984; McDonald and Xu, 1995; Kleiber and Kotz, 2003). In particular, as a → 0,
p → ∞, β → 0, but a2p → 1/σ2 and βp1/a → eμ, the distribution tends to a log normal
LN(μ, σ)5; for a → ∞, p = r/a → 0, with r > 0, the distribution tends to a power

4It is sometimes convenient to allow for a < 0. One then simply replaces a by |a| in the numerator
of (1).

5Kleiber and Kotz (2003, p. 149) inadvertently indicate that β → ∞, a2 → 1/σ2 and βp1/a → μ, as
a → 0.

TABLE 1

Basic Descriptive Statistics of Data

Year No. countries Min Median Mean S.D. Skew Kur Max Gini

1985 138 176.70 2,873 5,687 6,854.35 2.196 9.258 39,680 0.574
1986 139 174.30 2,822 5,807 6,856.94 2.027 8.329 40,050 0.572
1987 139 203.80 3,011 6,069 7,081.24 1.895 7.378 39,900 0.571
1988 139 226.30 3,349 6,340 7,287.41 1.821 7.098 41,520 0.567
1989 139 248.40 3,357 6,749 7,844.09 1.793 6.732 43,670 0.572
1990 145 258.60 3,242 6,850 7,830.97 1.546 4.956 36,240 0.571
1991 146 280.00 3,384 7,083 8,073.54 1.548 5.000 37,660 0.570
1992 162 266.60 3,548 7,043 8,129.12 1.676 5.521 39,370 0.570
1993 164 281.80 3,727 7,259 8,411.52 1.692 5.540 39,430 0.570
1994 166 267.80 3,763 7,474 8,773.37 1.698 5.516 40,490 0.576
1995 168 266.40 3,920 7,768 9,018.78 1.652 5.311 42,160 0.573
1996 168 261.80 4,124 8,095 9,331.83 1.609 5.090 43,120 0.572
1997 170 246.80 4,424 8,461 9,746.16 1.658 5.446 47,390 0.570
1998 173 240.60 4,462 8,593 9,943.30 1.678 5.580 49,680 0.570
1999 174 229.20 4,784 8,888 10,307.36 1.693 5.647 50,680 0.570
2000 182 213.20 5,109 9,302 10,869.82 1.756 6.002 55,410 0.572
2001 182 213.40 5,483 9,624 11,165.46 1.754 6.039 57,450 0.569
2002 183 217.90 5,714 9,874 11,413.01 1.743 6.018 60,130 0.568
2003 185 228.50 5,807 10,250 11,808.88 1.734 5.942 61,630 0.567
2004 185 242.70 5,861 10,980 12,620.08 1.791 6.467 67,770 0.565
2005 185 261.70 6,197 11,660 13,186.24 1.718 6.075 70,460 0.561
2006 185 276.90 6,685 12,520 14,091.08 1.740 6.299 75,170 0.559
2007 185 294.00 7,625 13,360 14,844.16 1.705 6.216 81,100 0.555
2008 185 309.70 7,961 13,820 15,046.98 1.646 5.950 80,860 0.548
2009 185 311.90 7,908 13,390 14,417.90 1.685 6.221 77,450 0.542
2010 185 328.90 8,289 13,920 15,083.78 1.802 7.077 88,310 0.541
2011 185 348.50 8,604 14,440 15,753.80 1.899 7.874 97,990 0.542
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function distribution PF(r, β)6 (McDonald et al., 2013). Since the power function
distribution is the inverse Pareto distribution (Kleiber and Kotz, 2003, p. 73), for
a → ∞, p → 0, with ap = −r, the Pareto distribution Par(β, r) is a limiting case as
well. This makes the GG useful for discriminating among these models.

The GG was used by Kloek and Van Dijk (1978), Taillie (1981), McDonald
(1984), Atoda et al. (1988), and Bordley et al. (1996) to study the income distri-
bution in a number of different countries. In this paper, we use the GG to model
the size distribution of the world income. The fitted model is given by
X a p~ GG( , , )ˆ ˆ ˆβ , where â, β̂ , p̂ are maximum likelihood estimates of a, β, and p.
For the estimation of the three unknown parameters, we use a generalization of the
Rigby and Stasinopoulos (1996a, 1996b) algorithm, which does not require accu-
rate starting values to ensure convergence.7

Results of fitting the GG to our dataset are reported in Table 2. We give the
estimates for the whole time window to analyze the evolution of the world income
distribution over time. Values of â, β̂ , and p̂ suggest that the log-normal distri-
bution may be a good model for our data. Indeed, β̂ and p̂ respectively tend to
zero and infinity, namely to the limit value for the GG to converge to the log-
normal function. â is very close to zero, though it tends to increase over the time
period under consideration, suggesting that the agreement with the log normal
may deteriorate over time.

The relative fits of the log normal and GG with each other and with the data
will be further explored in the next section. For the case under study, an increase
in a confirms that the world income distribution has become less concentrated over
time.

4. The Goodness of Fit

In order to get a formal test of the appropriateness of the log-normal hypoth-
esis versus the GG model, we perform a likelihood ratio (LR) test, which provides
the basis for comparing the goodness-of-fit (GoF) of nested models.

The LR test statistic is

(2) LR
L

L
L Lr

g

g r= −
⎛
⎝⎜

⎞
⎠⎟

= −2 2ln
( )
( )

[ln ( ) ln ( )],
Θ
Θ

Θ Θ

where L(·) is the likelihood function, and Θg and Θr denote maximum likelihood
estimators of the general and restricted model, respectively. The null hypothesis
that the distribution with fewer parameters fits the data as well as the more general
model is rejected if the value of the test is greater than a chi-squared percentile with
k degrees of freedom, where the percentile corresponds to the chosen confidence
level. In fact, the test statistic is asymptotically distributed as a χ2 random variable
with degrees of freedom equal to the difference in the number of free parameters
between the two models. Based on the LR test results shown in Table 3, the
hypothesis that the GG is observationally equivalent to the log-normal function

6Kleiber and Kotz (2003, p. 149) inadvertently indicate that the PF is a limiting case of the GG as
a → 0; the correct limit is a → ∞.

7R users may use the gamlss package.
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â
0.

06
8

0.
08

6
0.

09
0

0.
11

1
0.

08
4

0.
04

9
0.

05
8

0.
05

5
0.

05
8

0.
02

0
0.

04
6

0.
06

4
0.

08
3

0.
09

5
β̂

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0,

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

p̂
27

,3
71

22
,1

38
22

,0
08

19
,3

48
25

,7
14

44
,5

31
39

,1
00

42
,8

40
41

,8
71

11
6,

47
8

54
,9

94
41

,6
05

34
,6

20
30

,7
12

Y
ea

r
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11

â
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can not be rejected at conventional levels of significance, except for the end of the
time period being considered, which is consistent with the estimated values of a

increasing.
Finally, our log-normal hypothesis is investigated using three GoF tests: the

Kolmogorov–Smirnov (KS), the Anderson–Darling (AD), and the Cramér–von
Mises (CvM) tests.

For a hypothesized cumulative distribution function (CDF), F(x), the KS
statistic is

(3) D sup F x F xn x n= −( ) ( ) ,

where F x
n

In X xi

n

i
( ) = ≤=∑1

1
is the empirical cumulative distribution function

(ECDF) ( IX xi ≤ is the indicator function that is equal to 1 if Xi ≤ x and 0 otherwise).
The null hypothesis that the sample comes from F(x) is rejected at level α if

nD Kn ≥ α, where Kα is calculated by P(K ≤ Kα) = 1 − α, according to the
Kolmogorov distribution (D’Agostino and Stephens, 1986).

Rather than computing the largest vertical distance between the two com-
pared CDFs, the AD statistic is calculated over the whole range of data. This gives
more weight to outliers than KS and makes the AD GoF test more powerful than
KS for detecting departures in the tails from the hypothesized distribution.

The AD test statistics is

(4) AD n S= − − ,

with

(5) S
i

n
F x F xi n i

i

n

= − − − − +
=
∑ 2 1

1 1
1

[ln( ( )) ln( ( ))].

Differently from KS, the AD test makes use of the specific distribution for
calculating critical values. This is an advantage for sensitivity, but it requires that
critical values be calculated for every single distribution tested. Several tabulated
values can be found in D’Agostino and Stephens (1986).

An alternative to KS is the CvM statistic given by

(6) CvM
n

i

n
F xi

i

n

= + − −⎡
⎣⎢

⎤
⎦⎥=

∑1
12

2 1
2

2

1

( ) .

Critical values for this test can be found in D’Agostino and Stephens (1986) and
Anderson (1962). When KS and CvM tests give opposite results, the second one
should be trusted (Anderson, 1962).

When, as in our study, parameters of the tested distribution are not known
in advance but have to be estimated from the sample itself, simulation experiments
or other methods are required to correct the test statistic and the critical
values.

We have determined critical values following a parametric bootstrap proce-
dure. We have first fit a log-normal model to our observed data to calculate
parameters μ̂ and σ̂, and then the test statistic for the observed data has been
compared against the test value calculated for a large number (2500) of synthetic
data sets, as large as the real data, drawn from a log-normal distribution with
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mean μ̂ and standard deviation σ̂. The fraction of synthetic measurements larger
than the empirical one defines our p-value.

Table 4 shows, for every year in the panel, the statistics for the fit to the
log-normal model. p-Values are not statistically significant for every year under
study and GoF test statistic, indicating that our dataset is consistent with a
log-normal distribution.

5. Conclusions

In this paper we have analyzed the size distribution of the world income
measured in terms of GDP per capita (PPP), using data taken from the IMF, WEO
database (April 2013), for the period 1985–2011.

We have shown that the world income has a right-skewed distribution with an
inequality Gini coefficient ranging between 0.541 and 0.576. For all the years in the
panel we have also provided a fit to a three-parameter GG function, which includes
the log-normal and the Pareto distributions as limiting cases.

The estimated values of parameters suggest that the world income distribu-
tion may be reasonably approximated by a log-normal model rather than by a
power law. This result has been shown to be quite persistent as we move from 1985
to 2011. Goodness of fit tests support this finding.

The classic explanation for the empirical distribution of income is Gibrat’s
law of Proportionate Effect (Gibrat, 1931). In fact, the log-normal distribution can
be derived as an outcome of stochastic growth models that rely on that famous
empirical law (Sutton, 1997). This being the case, the possibility of Pareto’s law
shaping the size distribution of the world income has to be excluded because, as
demonstrated in Bottazzi (2009), the law of Pareto and the law of Gibrat can not,
in any respect, be reconciled.8
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