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1. Introduction

It is widely agreed in the literature that a multidimensional view of individual
well-being along the lines suggested by Sen (1985, 1993) is needed when poverty,
social welfare, and inequality comparisons are made. Alkire (2002), Alkire and Foster
(2011), and Alkire and Santos (2011) pursue this point and helped form the Multi-
dimensional Poverty Index (MPI), which the United Nations Development Pro-
gramme (UNDP) introduced in its 2010 “Human Development Report.” These are
welcome innovations in a challenging area of research and policy application.1

Note: An early version of this paper was circulated under the title “Ordinal Comparison of
Multidimensional Deprivation: Theory and Application.” We are grateful to conference participants at
PET (Galway), New Directions in Welfare (Oxford), the DASIG Policy Analytics workshop (Paris),
Inequality–Measurement, Trends, Impacts, and Policies (Helsinki), and Alain Trannoy, Marc
Fleurbaey, Conchita D’Ambrosio, and two anonymous referees, for very helpful comments. Financial
assistance from the Danish Consultative Research Committee for Development Research (FFU) is
appreciated. The usual caveats apply.

*Correspondence to: Lars Peter Østerdal, Department of Business and Economics, University of
Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark (lpro@sam.sdu.dk).

1For general discussion of the case for multidimensional understanding of inequality and poverty,
see Grusky and Kanbur (2006) and Sen (2006).
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A persistent methodological challenge in the analysis of (multidimensional)
inequality is that outcomes are often ordinal in nature; that is, the outcomes are
(partially) ranked in terms of better or worse, but there is no natural measure for
the distances between them. In recent years considerable progress has been made
in the development of methods based on stochastic dominance theory for com-
parisons of multidimensional inequality that are robust over broad classes of
“utility” indices and aggregation rules across dimensions of well-being.2 Gravel
and Moyes (2006, 2011, 2012) characterize the elementary redistributive opera-
tions that reduce inequality in a two-dimensional model where one of the attri-
butes is cardinally measurable. Their framework provides a method for making
inequality comparisons between distributions with common mean for the cardinal
attribute and identical marginal distributions for the ordinal attribute. Decancq
(2012) and Meyer and Strulovici (2012) study ordinal interdependence concepts
for comparisons of discrete multidimensional distributions that have identical
marginal distributions. A closely related line of literature deals with robust com-
parisons of poverty/social welfare (e.g., Atkinson and Bourguignon, 1982;
Bourguignon, 1989; Duclos et al., 2006, 2007, 2011; Gravel et al., 2009; Gravel and
Mukhopadhyay, 2010; Østerdal, 2010; Arndt et al., 2012) where the latter two
papers apply an ordinal multidimensional first order dominance approach.
However, ordinal inequality concepts for multidimensional distributions (not nec-
essarily having the same marginal means or distributions) are yet to be developed.3

When data are ordinal in nature, use of a conventional income inequality
measure, such as the Gini index, is not meaningful since it requires that outcomes
are measured on a cardinal scale that reflects the relative desirability of outcomes.
Measures of dispersion for one-dimensional ordinal categorical data have been
developed since at least the early 1990s (see, e.g., Blair and Lacy, 1996, 2000).
Allison and Foster (2004) put forward a simple but illuminating and intuitive
model for comparisons of inequalities when outcomes are categorical and
ordinally ranked. The Allison–Foster framework is a median-based dominance
approach in which distribution x is more unequal than distribution y whenever the
two distributions have common median and x is more spread out relative to the
median than y. As discussed in Allison and Foster (2004), the median, rather than
for instance the mean, is chosen as the reference point since the median is the
natural ordinally invariant center of distribution. For empirical illustration, they
provided both first order dominance comparisons and ordinal inequality compari-
sons of distributions of self-assessed health across states and regions of the United
States, and showed that the inequality comparison concept was both meaningful
and operational. A number of recent contributions have developed related
inequality measures based on dispersions from the median and provided further
applications of these methods (e.g., Apouey, 2007; Abul Naga and Yalcin, 2008;

2For surveys of traditional (cardinal) multidimensional inequality measures, such as the various
multidimensional generalizations of the Gini index and the Atkinson–Kolm–Sen approach, we refer to
Maasoumi (1999) and Weymark (2006). See also Savaglio (2006) and Trannoy (2006) for broader
discussions.

3Kobus (2012) characterizes a class of multidimensional inequality indices for ordinal data though.
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Madden, 2010; Kobus and Miłoś, 2012; Dutta and Foster, 2013). Zheng (2011)
introduces a new approach to rank and measure socioeconomic health inequality
with ordinal health data.

The aim of this paper is to introduce a median-based notion of inequality for
ordinal two-dimensional categorical data, with emphasis on the case of binary
indicators. Our concept is relevant for situations where well-being is measured
along two dimensions (attributes), and where only ordinal information about the
desirability of outcomes is available. This means that along each dimension out-
comes can be ranked according to their desirability, but nothing is assumed about
the relative importance of attributes, complementarity/substitutability relation-
ships, and the relative importance of levels within each attribute. Our concept
extends the Allison–Foster framework for assessing inequality of one-dimensional
categorical distributions to a two-dimensional one. Roughly speaking, in our
model, distribution f is more unequal than distribution g, if the two distributions
have a common arithmetic median (i.e., they have a common ordinally invariant
reference point) and f can be obtained from g by certain “inequality-increasing
elementary transformations” in population mass relative to the reference point.
Note that the arithmetic median is the vector of marginal medians (e.g., Hayford,
1902; Haldane, 1948; Barnett, 1976). It has been described as the only reasonable
multi-attribute generalization of the median concept when the attributes are dif-
ferent in kind (e.g., Haldane, 1948; Barnett, 1976).

As in the Allison–Foster model, when the (arithmetic) medians differ for two
distributions they are incomparable inequality-wise. This tends to limit applica-
bility in cases with many dimensions and levels where it happens less frequently
that two given distributions have a shared median. Another obstacle for empirical
implementation is that it is in general difficult to check if a given distribution is
more unequal than another. Therefore, we focus in this study on the 2 × 2 case,
where common arithmetic median outcomes tend to be the rule rather than the
exception, and where an easily implementable procedure for detecting inequality
relations between empirical subpopulation distributions can be derived.

The rest of the study is organized as follows. In Section 2 we motivate,
illustrate, and provide intuition. Section 3 contains general definitions and a
comparison of our approach to that of Allison and Foster (2004). Section 4
addresses the 2 × 2 case (i.e., the case of two binary outcome variables), and we
develop a procedure for detecting inequality relations in practice. Briefly, testing
that one distribution is more unequal than another consists of a comparison of
medians, and, if a common median exists, verification of a system of inequalities
which depends on the location of the median. The test requires straightforward
calculations and can be carried out in a spreadsheet. In Section 5 we apply our
model to two-dimensional indicators of childhood deprivation in Mozambique.
Section 6 concludes.

2. An Ordinal Approach to Bivariate Inequality:
Illustration and Intuition

Suppose a person’s well-being can be measured using two 0-1 binary vari-
ables, so there are four possible outcomes. Let (0, 0) denote the outcome where
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both variables take the value 0, (1, 0) the outcome where the first variable takes the
value 1 and the second the value 0, and so on. In the diagram below the arrows
point to better outcomes.

0 0 1 0

0 1 1 1

, ,

, ,

( ) → ( )
↓ ↓

( ) → ( )
↘

Outcome (0, 0) is the worst and (1, 1) is the best outcome. We assume it is
unknown which of the two intermediate outcomes (0, 1) and (1, 0) is better. A
population is characterized by how people are distributed among the four out-
comes. This can be illustrated as follows:

f :

0 1

0

1

2
16

4
16

4
16

6
16

where 2
16 of the population has (0, 0), 4

16 has (0, 1) and (1, 0) respectively, and 6
16

has (1, 1). Call this distribution f, and compare with distribution g:

g :

0 1

0

1

4
16

2
16

2
16

8
16

Here g can be obtained from f by moving mass amounting to 1
8

from outcome

(0, 1) to outcome (0, 0) and by moving a similar amount from (1, 0) to (1, 1). In
other words, g can be obtained from f by a correlation-increasing switch (Hamada,
1974; Epstein and Tanny, 1980; Tchen, 1980; Boland and Proschan, 1988). As
argued by Atkinson and Bourguignon (1982), Tsui (1999), Atkinson (2003),
Bourguignon and Chakravarty (2003), Decancq (2012) and others, such a
correlation-increasing switch intuitively increases inequality. It provides a bal-
anced movement of mass from two intermediate outcomes to the two extremes
that does not change the marginal distributions but increases interdependence. If
a person experiences a bad outcome in one of the dimensions of g, the conditional
probability that the other outcome is also bad is higher for g than for f, so indeed
it seems reasonable to say that g is more unequal than f.4

For one population distribution to be obtained from another by a correlation-
increasing switch, it is required that the difference in mass between the two distribu-
tions for the outcome (0, 0) is exactly equal to the corresponding difference for the
outcome (1, 1). Unless the populations (or number of observations) underlying the
two distributions are very small, this is only going to happen in exceptional cases.

4Note that a correlation-increasing switch may move some mass toward the center of the distri-
bution (the median outcome). However, it will then simultanuously move an equal amount of mass
away from the center of the distribution, which overall results in a more dispersed distribution.
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However, let us consider a third distribution h:

h :

0 1

0

1

4
16

2
16

3
16

7
16

Obviously, h cannot be obtained from g or f by a correlation-increasing
switch. But f, g and h all have the same arithmetic median in (1, 1), that is, a median
value of 1 in each of the two dimensions.5 If we regard the arithmetic median as the
natural center of the distributions, then intuitively h is more unequal than g.
Indeed, distribution h can be obtained from g by moving population mass amount-
ing to 1

16
from the median outcome (1, 1) to (1, 0): that is, h can be obtained from

g by a median-preserving spread (Allison and Foster, 2004).
Accordingly, we will say that a distribution is ordinally more unequal than

another if it is possible to obtain this distribution from the other distribution
through a sequence of correlation-increasing switches and/or median-preserving
spreads. In our example, h is ordinally more unequal than f since there exists a
distribution g, such that g can be obtained from f through a correlation-increasing
switch and h can be obtained from g through a median-preserving spread.

3. General Formulation

Suppose that there are two attributes (dimensions). An outcome is a two-
dimensional vector x = (x1, x2) where each xj is defined on an attribute set Xj = {0,
. . . , nj}, j = 1, 2. The set of outcomes is the product set X = X1 × X2.

The statement x ≤ y will mean that xj ≤ yj for all j, and x < y will mean that
xj ≤ yj for all j and x ≠ y. A distribution is a real-valued function f on X with

f x
x X

( ) =
∈
∑ 1 and f(x) ≥ 0 for all x ∈ X. Let fj denote the marginal distribution on

Xj.
Let mj( fj ) denote the median of fj on Xj.6 The (arithmetic) median of f is the

vector m( f ) = (m1( f1), m2( f2)), of coordinate-wise medians.
We say that distribution g can be derived from distribution f by a bilateral

transfer (of mass between two outcomes), if there are outcomes x, y and a non-
negative scalar ε such that g(x) = f(x) − ε, g(y) = f(y) + ε and g(z) = f(z) otherwise.
If y < x the bilateral transfer is diminishing (i.e., moves mass from a better to a
worse outcome); if for some outcome z that y < x ≤ z or z ≤ x < y it is directed away

5As mentioned in the Introduction, the arithmetic median is the vector of marginal medians and
the natural multi-attribute generalization of the median concept when the attributes are different in
kind (e.g., Haldane, 1948; Barnett, 1976). For geometric problems, like that of defining the geographi-
cal median for a population distributed on a plane (or a sphere), a number of other median concepts
exist (see Small, 1990).

6To ensure a unique median value, we will define mj( fj ) as the smallest element xj in Xj such that
∑ ( ) ≥=i

x

j
j f i1

1
2.
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from z; and if m( f ) = m(g) it is median-preserving. A median-preserving bilateral
transfer directed away from the median is a median-preserving spread (see Section
2 for an example).

We say that g is derived from f by a correlation-increasing switch if we can
choose outcomes x, y, v, w such that v = (min{x1, y1}, min{x2, y2}) and
w = (max{x1, x2}, max{x2, y2}), f(x) − g(x) = f(y) − g(y) > 0, f(v) − g(v) =
f(w) − g(w) < 0, and g(z) = f(z) otherwise (again, see Section 2 for an example).

In the following, we define an inequality-increasing elementary transformation

to be a correlation-increasing switch or a median-preserving spread.
If g can be derived from f by a finite sequence of inequality-increasing elemen-

tary transformations, we say that g is ordinally more unequal than f, or, as an
equivalent statement, f is ordinally more equal than g. Formally, g is ordinally more
unequal than f if there are distributions f = f 1, f 2, . . . , f k = g, where f i+1 is obtained
from f i by an inequality-increasing elementary transformation, i = 1, . . . , k − 1.
Note that the relation “ordinally more unequal” is a partial order (i.e., reflexive,
antisymmetric, and transitive).7

As illustrated by Allison and Foster (2004), it is often of interest to comple-
ment (ordinal) comparisons of inequality with (ordinal) comparisons of social

welfare (see also Zheng, 2008). In our ordinal framework, the natural criterion for
comparison of social welfare is first order dominance. A population distribution f

first order dominates population distribution g whenever g can be obtained from
f by iteratively moving population mass from better to worse outcomes, that is, if
there are distributions f = f 1, f 2, . . . , f k = g, where f i+1 is obtained from f i by a
diminishing bilateral transfer i = 1, . . . , k − 1. Equivalently, any additive non-
decreasing social welfare function would give at least as much social welfare to f as
to g.8

Before proceeding, we compare these definitions and concepts with the one-
dimensional case put forward by Allison and Foster (2004). With X = X1 = {1, . . . ,
n1}, f = f1 and g = g1, define F(k) = Σj=1, . . . ,kf(j) and G in a similar way. Allison and
Foster (2004) say that g has a greater spread than f whenever m(g) = m( f ) and
G(k) ≥ F(k) for all k < m( f ) and G(k) ≤ F(k) for all k ≥ m( f ). For the one-
dimensional case, g has greater spread than f precisely if g is ordinally more unequal
than f (as defined here). Also, the general definition of first order dominance
given here is equivalent to the standard definition in the one-dimensional case. Thus,
the definitions presented here generalize those of Allison and Foster’s one-
dimensional case.

7A distribution with 50 percent mass at one extreme outcome and 50 percent mass at the other
extreme outcome is the unique maximal element with respect to this relation (i.e., no other distribution
is more unequal). A distribution having all mass concentrated on one outcome is clearly a minimal
element (i.e., no other distribution is more equal). However, for N ≥ 2 it is possible to find minimal
elements with mass at more than one outcome.

8It is worth mentioning that in the multidimensional context the term “first order dominance” has
been used with other meanings in the economics literature. In particular, Atkinson and Bourguignon
(1982) and subsequent literature have used this term for a less restrictive stochastic dominance concept
which corresponds to additional restrictions on the social welfare function (also known as an orthant
stochastic order in the stochastic orderings literature).
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4. Implementation of the 2 × 2 Case

A central question is how to test if one distribution is ordinally more unequal
than another (i.e., has greater spread in an ordinally meaningful sense). For two
one-dimensional distributions f and g, such testing is a straightforward matter of
checking whether n1 inequalities hold. See Allison and Foster (2004) for a detailed
discussion of how this test can be nicely visualized. For the multidimensional case
(even the two-dimensional), checking if one distribution is more unequal than
another is more complicated. We focus in our empirical implementation on the
2 × 2 case which can be dealt with in a tractable manner.

In this section, we assume that an outcome is a vector x = (x1, x2) where each
attribute xj is defined on an attribute set Xj = {0, 1}, j = 1, 2. Thus, the outcome set
is X = {0, 1} × {0, 1}. For an outcome x = {x1, x2} we use the notation f(x1, x2) for
f(x).

4.1. Checking First Order Dominance Relations

Let f and g denote distributions on X. By application of Strassen’s Theorem
(Strassen, 1965), it follows that f first order dominates g if and only if the cumu-
lative probability mass at f is smaller than or equal to that at g for every lower

comprehensive subset of outcomes. A lower comprehensive subset Y ⊆ X holds the
property that if an outcome is in the subset, then all smaller outcomes are also
included in that subset. That is, if x ∈ Y, y ∈ X and y ≤ x then y ∈ Y.

Thus, in the 2 × 2 case, f first order dominates g if and only if the following
four inequalities are satisfied: g(0, 0) ≥ f(0, 0), g(0, 0) + g(0, 1) ≥ f(0, 0) + f(0, 1),
g(0, 0) + g(1, 0) ≥ f(0, 0) + f(1, 0), and g(0, 0) + g(1, 0) + g(0, 1) ≥ f(0, 0) + f(1,
0) + f(0, 1).9

4.2. Checking Ordinal Inequality Relations

We proceed next to present necessary and sufficient conditions for f being
ordinally more equal than g, as defined in Section 2.

Correlation-increasing switches are median-preserving, so a necessary condi-
tion for g to be ordinally more unequal than f is that the two distributions have
common median.10 We can therefore rely on considering in turn each of four
possible cases of common median, and proceed as described below.

Proposition 1. (Ordinal inequality check for the 2 × 2 case) Let X = {0, 1} × {0, 1}
and let f and g be two distributions on X. Then g is ordinally more unequal than f if

and only if one of the following six cases holds:

A1. f and g have common median (1, 1), and f first order dominates g.

A2. f and g have common median (0, 0), and g first order dominates f.

9Note that the Atkinson and Bourguignon (1982) definition of first order dominance requires only
that there is at least as much mass at g as at f for all lower rectangular sets of outcomes. Thus, for the
2 × 2 case, it is not required that g(0, 0) + g(1, 0) + g(0, 1) ≥ f(0, 0) + f(1, 0) + f(0, 1). In general, the
concepts differ greatly in the number of inequality restrictions that are imposed.

10Suppose that g is derived from f by some correlation-increasing switch. For the case X =
{0, 1} × {0, 1}, any correlation-increasing switch can be conducted by means of two bilateral transfers
(of the same amount of mass) from (0, 1) and (1, 0) to the extreme outcomes (0, 0) and (1, 1).
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B1. f and g have common median (1, 1), and f(1, 0) ≥ g(1, 0), f(0, 1) ≥ g(0, 1),
f(1, 1) ≤ g(1, 1), g(1, 1) − f(1, 1) ≤ min{f(1, 0) − g(1, 0), f(0, 1) − g(0, 1)}.

B2. f and g have common median (0, 0), and f(1, 0) ≥ g(1, 0), f(0, 1) ≥ g(0, 1),
f(0, 0) ≤ g(0, 0), g(0, 0) − f(0, 0) ≤ min{f(1, 0) − g(1, 0), f(0, 1) − g(0, 1)}.

C1. f and g have common median (1, 0), and g(1, 0) ≤ f(1, 0), g(0, 1) ≤ f(0, 1),
g(1, 1) ≥ f(1, 1), g(0, 0) ≥ f(0, 0), f(1, 0) − g(1, 0) ≥ f(0, 1) − g(0, 1).

C2. f and g have common median (0, 1), and g(1, 0) ≤ f(0, 1), g(1, 0) ≤ f(1, 0),
g(1, 1) ≥ f(1, 1), g(0, 0) ≥ f(0, 0), f(0, 1) − g(0, 1) ≥ f(1, 0) − g(1, 0).

The proof of Proposition 1 is given in Appendix A. The intuition behind the
conditions is discussed below.

The cases A1 and A2 are symmetric so we will only discuss A1. As mentioned
in Section 4.1, f first order dominates g if and only if it is possible to go from f to
g by a finite sequence of diminishing bilateral transfers. Each such bilateral trans-
fer is a median-preserving spread (as shown formally in the Appendix) and thereby
an inequality-increasing elementary transformation.

The cases B1 and B2 are symmetric so we will only discuss B1. To provide
some intuition for the inequalities in B1, suppose that f does not first order
dominate g, and g does not first order dominate f. Then, if g is ordinally more
unequal than f, it is impossible to go from f to g via a finite sequence of inequality-
increasing elementary transformations without making use of at least one
correlation-increasing switch (because we would then have first order dominance
since the median is an extreme outcome (1, 1)). Thus, if g is ordinally more unequal
than f, then f(1, 0) > g(1, 0) and f(0, 1) > g(0, 1), since otherwise it would be
possible to go from f to g without any correlation-increasing switches (because if
a correlation-increasing switch is involved, one of the intermediate outcomes
would receive at least as much probability mass from (1, 1) as is moved to (1, 1) and
hence only diminishing bilateral transfers are needed, a contradiction). However,
these two conditions are not sufficient for g to be ordinally more unequal than f.
Roughly speaking, we need a condition ensuring that all mass transferred to (1, 1)
in the process of moving from f to g can be transferred from the intermediate
outcomes (0, 1) or (1, 0) in connection with a correlation-increasing switch. This is
precisely the condition g(1, 1) − f(1, 1) ≤ min{f(1, 0) − g(1, 0), f(0, 1) − g(0, 1)}.

The cases C1 and C2 are symmetric so we will only discuss C1.11 The first
inequalities ensure that f has at least as much mass at the intermediate outcomes,
and not more mass than at the extreme outcomes, than g. The last condition
ensures that the difference in mass at the median outcome (1, 0) is no less than the
difference in mass at the other intermediate outcome (0, 1). As verified formally in
the Appendix, the conditions imply (and are implied by) that g can be obtained
from f by a correlation-increasing switch and bilateral transfers of mass from (1, 0)
to (0, 0) and (1, 1) respectively.

11It is possible to show that A1 or B1 holds if and only if the distributions have common median
in (1, 1) and f dominates g according to the first order dominance concept of Atkinson and
Bourguignon (1982). Although the foundation of the Atkinson–Bourguignon concept of first order
dominance in terms of elementary operations has never been fully established (see Moyes, 2012,
footnote 13), it shows that our concept and the operation involved is closely linked with the Atkinson–
Bourguignon concept of first order dominance for cases where the median takes an extreme value.

Review of Income and Wealth 2015

© 2015 International Association for Research in Income and Wealth

8

Review of Income and Wealth, Series 62, Number 3, September 2016

VC 2015 International Association for Research in Income and Wealth

566



The following illustrates how a concrete data set can be analyzed in the
present framework. For illustrative purposes, we highlight examples of all the
basic types of ordinal inequality relations that can occur in the 2 × 2 case (see
Section 5.3).

5. Empirical Illustration

In Mozambique, investment in schooling, health, and sanitation has increased
the level of human capital and indices of human development. While this devel-
opment has influenced living standards of both adults and children, its impact on
children is of particular interest. The acquisition of human capital in early child-
hood is imperative for future learning, earnings, and health status (UNICEF,
2006). Large gaps in basic welfare goods during childhood tend to persist, if not
widen, the variation in human capital, productivity, and living standards through-
out adulthood (see Strauss and Thomas, 1995; Orazem and King, 2007).

To address the above challenges, voucher or cash transfer programs targeted
at disadvantaged children have in recent years become more common. A general
problem with such government transfer programs is to make sure that transfers are
directed at the most disadvantaged children. Efficient targeting of government
resources require that administrators can detect the most vulnerable groups. We
illustrate how our model can be used for examining inequalities within and
between groups of Mozambican children, concentrating on three key characteris-
tics, rural–urban area of residence, gender of head of household, and gender of the
child. This results in a total of eight categories of children that we compare with
each other.

5.1. Data and Summary Statistics

We apply the model to the 2003 Mozambican Demographic and Health
Survey (DHS) data. This is a nationally representative data set that includes
detailed information on childhood poverty (for more information, see http://
dhsprogram.com/). Recently, Arndt et al. (2012) provided an alternative imple-
mentation of the multidimensional first order dominance approach with an
application to comparisons of child poverty in Vietnam and Mozambique between
groups and over time. We focus on three indicators for severe deprivation in
sanitation, health, and education, respectively (Gordon et al., 2003). Sanitation
deprivation indicates lack of access to a toilet of any kind, including communal
toilets or latrines. Health deprivation is an indicator for pre-school-aged children
(under five years) who have never been immunized or who have recently been ill
with diarrhea but did not receive medical attention. Education deprivation is an
indicator for school-aged children (between seven and eighteen years) who have
never been to school. We combine these into two 2 × 2 indicators of childhood
poverty for school-aged and pre-school-aged children, respectively. A detailed
description of the survey is given in UNICEF (2006).

Table 1 summarizes how indicators of childhood poverty are distributed
among the four possible outcomes. The top panel lists the distribution of
sanitation and education (for school-aged children), and the lower panel lists the
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distribution of sanitation and health (for pre-school-aged children), each by area
of residence, gender of head of household, and gender of the child. For example,
the first row of the lower panel shows that among pre-school-aged girls in rural,
male-headed households, 18.8 percent live with poor sanitation and under poor
health conditions, 44.4 percent have poor sanitation but adequate health, 4.8
percent have good sanitation but poor health, and the rest, 32 percent, have both
good sanitation and good health conditions. We have weighted these shares by
survey sample weights.

5.2. Results from Pairwise Comparisons

Table 2 shows first order dominance and ordinal inequality relations between
all distributions (within each panel) from Table 1. A number 1 in an entry indicates
that the row distribution first order dominates the column distribution, while 0
indicates no first order dominance. Capital letters indicate ordinal inequality
relations of the types specified in Proposition 1. An asterisk means that a boot-
strapping test indicates that the groups are significantly different (for more details
on this bootstrap procedure, see Appendix A.2). Note that first order dominance
might be compatible with ordinal inequality relations (of the type A), yet these
cases do not occur in the data shown, while ordinal inequality relations of type B
and C are present. We highlight these cases below.

Type B inequalities are those with extreme common medians, in (0, 0)
or (1, 1), but where none of the distributions first order dominates the other. For

TABLE 1

Percentages of Children’s Two-Dimensional Living Standards

Area, Gender of
Household Head,
Gender of Child (0, 0) (0, 1) (1, 0) (1, 1) Median No. of Obs.

Sanitation deprivation, Education deprivation
Rural, Male, Girl 27.7 34.5 10.3 27.6 (0, 1) 3716
Rural, Male, Boy 16.3 41.3 9.4 33.0 (0, 1) 4010
Rural, Female, Girl 21.6 38.4 8.7 31.2 (0, 1) 1223
Rural, Female, Boy 19.2 41.0 8.1 31.7 (0, 1) 1348
Urban, Male, Girl 6.0 9.9 7.2 76.9 (1, 1) 2858
Urban, Male, Boy 5.0 13.1 5.3 76.6 (1, 1) 2912
Urban, Female, Girl 8.2 9.0 5.3 77.5 (1, 1) 1140
Urban, Female, Boy 7.2 11.2 4.2 77.4 (1, 1) 1025

Sanitation deprivation, Health deprivation
Rural, Male, Girl 18.8 44.4 4.8 32.0 (0, 1) 2262
Rural, Male, Boy 19.2 44.8 4.7 31.3 (0, 1) 2288
Rural, Female, Girl 13.9 47.9 4.7 33.6 (0, 1) 580
Rural, Female, Boy 15.7 44.9 3.7 35.6 (0, 1) 598
Urban, Male, Girl 2.6 18.8 7.6 71.0 (1, 1) 1215
Urban, Male, Boy 2.9 18.2 8.1 70.9 (1, 1) 1156
Urban, Female, Girl 2.0 19.5 3.2 75.3 (1, 1) 382
Urban, Female, Boy 3.7 16.7 8.5 71.1 (1, 1) 341

Notes: The first element, i, in vector (i, j) indicates sanitation deprivation. The second element, j,
indicates education deprivation in the top panel and health deprivation in the bottom panel, i, j = 0 is
deprivation, i, j = 1 is no deprivation.

Source: Authors’ calculations from DHS 2003.
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illustration, compare the distribution for urban boys in female-headed households
(last row in the upper panel of Table 1) with the distribution for urban boys in
male-headed households (third to last row in the upper panel of Table 1). None of
these distributions first order dominates the other, but the latter is more equal. To
see this, starting with the distribution for urban boys in male-headed households,
use a correlation-increasing switch of 1.1 and then a median-preserving spread of
0.3 and 0.8 from (1, 1) and (0, 1) to (0, 0). This results in the distribution for urban
boys in female-headed households.

Type C inequalities are those where the median is non-extreme and where
there is no first order dominance. An illustration of type C ordinal inequality can
be seen from comparing the distribution for girls in rural female-headed house-
holds (third row in the lower panel of Table 1) to the distribution of boys in similar
households (fourth row in the lower panel of Table 1). Here, the girls are more
equally distributed than the boys. To see this, starting with the distribution for the
girls, apply first a correlation-increasing transfer of 0.9 and then a median-
preserving spread of 0.9 and 1.1 from (0, 1) to (0, 0) and (1, 1), which gives the
distribution for boys. Note that because of rounding, the numbers do not match
exactly.

For the eight groups of pre-school-aged children, there are 21 first order
dominances and two ordinal inequality relations among the 28 different pairs of
groups compared. For school-aged children, we observe 21 first order dominances
and one ordinal inequality relation. From Table 2 it emerges that urban groups are
better off than rural groups. This is not so surprising. However, it also emerges
that there are more first order dominances between rural groups than between
urban groups, indicating more between-group inequality in the rural areas than in
the urban areas. In particular, school-aged boys in rural male headed households
are better off than any other rural group. Moreover, there is more within-group
inequality for school-aged children in urban female headed households than in the
corresponding male headed households. These findings deserve attention in policy
debates.

6. Conclusion

In this study we developed an ordinal concept of multidimensional inequality,
building on the Allison and Foster (2004) framework for comparing inequalities
with one-dimensional categorical data. To illustrate how our model can be applied
in the 2 × 2 case we compared poverty distributions of pre-school- and school-aged
children from the DHS data in Mozambique. Such data are available for a large
number of countries across the developing world, meaning that potentially inter-
esting comparisons are possible.

For these indicators, we find that first order dominance occur relatively
frequently while ordinal bivariate inequality relations are less frequent. Whether
this is because ordinal inequality relations generally are “rare” empirically, or
whether it is due to the chosen indicators of child poverty, cannot be established
with the data in hand. However, the example shows that while instances of ordinal
bivariate inequality relations may be relatively uncommon, they do exist empiri-
cally. Moreover, our indicators of sanitation, health, and education by area of
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residence, gender of the household head, and gender of the child provide insights
into how targeting of, for example, cash transfer programs presently under con-
sideration by the Mozambican government, should be pursued.

In sum, we have shown that it is possible to develop a meaningful and intuitive
concept of ordinal bivariate inequality. We have also demonstrated how it can be
applied in the 2 × 2 case. Future research will be required to explore how to deal
with variations of the concept and more general cases. In particular, an important
generalization would be to provide an ordinal inequality check procedure that
applies to general bivariate problems. Providing such a general procedure will
however not be straightforward. The many possibilites of combining correlation-
increasing switches and median-preserving spreads in various sequences will be too
complex to analyze directly as in the proof of Proposition 1, and thus a deeper
understanding of what can be obtained from these inequality-increasing elemen-
tary operations is needed. It is also possible to generalize the definitions and
concepts to an arbitrary finite number of dimensions, although the correlation-
increasing switch concept does not generalize in a straightforward manner to more
than two dimensions (Decancq, 2012); and checking inequality would be even
more challenging. Finally, the restriction that f and g have common medians for
ordinal inequality relations to be viable could possibly be relaxed. See Abul Naga
and Yalcin (2010) for an exploration along these lines for the one-dimensional
case.
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