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1. Introduction

The provision of residential property price indexes (RPPIs) is based on com-
bining suitable index numbers theory with available data. When the indexes are
hedonic or repeat sales based, the mix also involves appropriate regression tech-
niques. A recent and very comprehensive review of all alternative approaches to
the computation of RPPI can be found in the Handbook on Residential Property
Price Indexes (European Commission et al., 2013). The general recommendation
of the Handbook is that hedonic imputed (HI) indexes are to be preferred when
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the required data are available (see chapter 12, p. 159 of the handbook, and also
Silver and Heravi, 2007; Hill and Melser, 2008). The HI index construction
method is a type of matching method in that to compute the index, each prop-
erty is priced at two time periods (t and t + s, s ≠ 0); however, unlike the repeat
sales method, it does not require a matched sample. HI indexes do not assume
that the hedonic characteristics of the property have remained constant across
the two comparison periods, and thus all available transactions sales data can be
used in computation of the index. This is an important statistical feature as it
avoids having to discard large numbers of observations which can lead to the use
of a sample that is not representative of the population, one of the drawbacks of
the repeat sales method.

The computation of an HI index is based on a hedonic regression which is
estimated to provide a prediction of the sale price of each property transacted at
time t and an imputation of its sale price at the comparison period, t + s. The main
objective of this paper is to study the robustness of the constructed HI indexes to
choices made when specifying and estimating the hedonic regression. We compare
the use of the popular rolling window approach (ROW) to using a smoothing
based estimator (SM). It is shown that theoretically they differ in the way trans-
actions are weighted to obtain parameter estimates and imputations. For the
empirical part of the paper, we compare the indexes computed from the model
estimated under alternative model specifications of property location, using spatial
econometrics and/or spatial regressors.

The work of Triplett (2004) popularized the use of a “two-period adjacent”
(or “rolling two-period”) estimation of the hedonic model to impute prices for the
computation of HI indexes in consumer goods. For the case of constructing RPPI,
European Commission et al. (2013) discuss the use of M−period rolling windows,
while Hill and Melser (2008) and Hill and Scholz (2013), estimate the model yearly
without overlapping. For the purpose of this study we will use the terminology
rolling window for all cases where the prediction of the price is based on the
re-estimation of a regression model using two or more consecutive time periods
and a rolling sample. ROW meets the requirement of not fixing the coefficients of
the hedonic regression, leading to time-varying shadow prices, which is justified by
economic theory (see Diewert, 2003). In addition, the resulting index does not need
to be revised as new periods are added to the sample. However, the prediction
performance of ROW, measured by the mean square prediction error, is dismal
compared to that of a model with time-varying parameters estimated using an
optimal statistical estimator such as the Kalman Smoother (Rambaldi and Rao,
2011, 2013). This paper shows how the ROW relates to the Kalman Filter
Smoother (KF)1 and the Kalman Smoother (KS). We will refer to the KF and KS
as smoothing methods (SM) and in Section 4 we discuss the difference between
them, and under what circumstances their application leads to revisions of the
computed index.

The main difference between SM and ROW methods is how they weight the
available sample information. This is a crucial issue because unlike consumer
goods, the composition of sales (i.e., the composition of the observed sample) can

1This is the forward filter conditional on current and past information. See Section 4 for details.
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vary greatly from one period to the next. How information is weighted by estima-
tors is potentially crucial to the robustness of the computed index. The empirical
results in this paper illustrate the occurrence of index chain drift when the ROW
estimates are used to construct the index.

Even optimum estimators are affected by omitted variables in the model.
Controlling for the location of the property is crucial when modeling property
prices. The typical model used for the purpose of property price prediction
includes characteristics of the property (size of the land, structure, number of
bedrooms, etc.) as well as measures of its location. Property characteristics are
dictated mainly by data availability; location on the other hand can be incorpo-
rated into the model in a number of ways. Two alternatives proposed in the RPPI
literature are to use a spatial error covariance (Rambaldi and Rao, 2011) and to fit
splines using the property coordinates (Hill and Scholz, 2013). A third possible
alternative is to construct measures of distances to landmarks (e.g., distance to
schools, train station, park) and then incorporate them as spatial regressors in the
hedonic model. In this paper we compare the constructed indexes obtained from
the model when location is specified under two alternatives: a spatial error (SEM);
and the use of spatial regressors.

2. Hedonic Imputed RPPIs Used in This Study

Hill and Melser (2008), Hill (2011), and Rambaldi and Rao (2013) discuss a
range of index number formulae that are based on different sets of weighting
systems and on different sets of imputed prices. In this paper the general recom-
mendations from these works are taken and two types of indexes are used, a
Törnqvist and a Jevons index. These indexes “weight” information differently. A
Jevons index equally weights transactions, as it uses geometric averages. A
Törnqvist index, on the other hand, weights the relative value of each of the
properties included in the sample.2 The Törnqvist index is computed using actual
shares based on actual prices as defined in (1), and imputed (or predicted) prices in
both the base and current periods. This is known as a double imputation method
in the price index literature. Single imputation methods combine the observed
price with predictions used for the comparison period. The reader is referred to
Hill (2011) for a comprehensive treatment.

Let Pt
h represent the sale price of house h in period t. Further, let wt

h be the
value share of house h defined as:
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where Pt
h is the observed sale price of house h and Nt is the number of houses sold

in period t.

2Rambaldi and Rao (2011, 2013) labeled these “plutocratic and democratic” Törnqvist, respec-
tively. However, here we use the more conventional index number definition. We thank the editor for
pointing this out.
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The hedonic Törnqvist index is defined as follows:
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where P̂ xi
h

t
h( ) for i = t, t + s is an imputation of the price of house h with vector of

hedonic characteristics xt
h at periods; P̂ xi

h
t s
h′
+
′( ) is an imputation of the price of

house h′ with vector of hedonic characteristics xt s
h
+
′ .

Nt and Nt+s are the number of transacted houses in periods t and t + s,
respectively. Although it is possible for a house to have sold in both periods, they
are not overlapping samples in general.

These indexes might be influenced by properties with large price tags. Despite
this, the index measures the changes in the housing stock value that can be
attributed exclusively to price changes, and therefore provides useful information.
Official consumer price indexes, for instance, are constructed with these types of
weights because they track the change in the cost of what consumers in the
aggregate are buying. If we want to track the change in the aggregate value of the
housing stock for national accounts purposes these are appropriate weights.

The hedonic Jevons index consistent with the use of a log-price hedonic model
is defined as:
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The form of the index recognizes the unequal number of properties sold in the
two periods and defines a geometric mean of the geometric Laspyeres and Paasche
indexes (see equations (6) and (7)).
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We have labeled the two indexes as hedonic Törnqvist/Jevons above to empha-
size these are not based on matching pairs as in the standard price index case. In
both cases the use of a geometric mean is consistent with a general log-normal
distribution of price relatives. The use of a Jevons index might be more appropriate
if the principal aim is to generate a statistically sound estimator of the central
tendency of the distribution of the change in property prices. Given that the
expenditure weights used in hedonic imputed price indexes do not have the same
theoretical basis as the expenditure shares used in the construction of the consumer
price index, the choice between the Törnqvist and Jevons should be driven by the
main objective behind the property price index construction. For instance, it might
be reasonable to construct RPPIs for meaningful sub-regions (and even types of
houses if the sample size permits) using the Jevons index and then aggregate using
value weights.

Silver and Heravi (2007) and Hill and Melser (2008) discuss the importance of
computing RPPIs using estimates of the parameters which vary over time and
regions (see equation (9) and related discussion in Hill and Melser (2008)). This is
a very important issue that deserves further research. However, the objectives of
this paper relate to the commonality amongst these indexes, that is, they depend on
a model prediction, P̂ xi

h
t
h( ) (P̂ xi

h
t s
h′
+
′( )) i = t, t + s. The next section discusses alter-

native modeling frameworks available to construct the imputation required to
construct these indexes.

3. Hedonic Models of Property Prices

For the purpose of this discussion it will be convenient to set a general
framework that can accommodate a number of alternative models and estimators
that are candidates for computing P̂ xi

h
t
h( ) (P̂ xi

h
t s
h′
+
′( )) i = t,t + s. The alternative

estimators are then discussed, with an emphasis on how they weight the informa-
tion available, and which estimator leads to index revisions.

Consider the hedonic model for the logarithmic transformation of the sale
price of properties3 that includes a term that captures overall macroeconomic
conditions in the market, μt, a term that captures the size and quality attributes of
the properties, Xtβt, and a random disturbance assumed normally and identically
distributed (NID).

(8) y X NID Ht t t t t t t= + + ( )μ β ε ε ~ ,0

where:
yt —Nt × 1 vector of observations of the dependent variable, typically the log
of sale price (Pt), yt = lnPt for the Nt transactions observed in period t;
μt —captures overall macroeconomic trends;
βt —K × 1 vector of unknown slope parameters (shadow prices);
Xt —Nt × K matrix of independent variables, house and land attributes, which
will typically include measures of spatial characteristics (such as distances to
transport, schools, etc);

3The use of a semi-log model is standard across regression based methods (e.g., repeat sales,
time-dummy, and hedonic imputed) used in the computation of RPPIs (see Hill, 2011).
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εt—Nt × 1 vector of random disturbances assumed to be normally distributed
although not necessarily independent (this is to allow for spatial dependence);
E Ht t tε ε′( ) = is the variance–covariance, H It Nt

= σε
2 if the errors are not spa-

tially dependent. The specification in the case of spatial dependence is dis-
cussed shortly.
A number of assumptions can be made regarding the behavior of μt and βt in

(8) which have consequences for how the model is estimated. To discuss those it is
convenient to start from a general specification,

(9) μ μ σ ξμt t t= +−1

(10) β β σ ζβkt kt ktk
= +−1

where, ξt ∼ NIID(0, 1), ζkt ∼ NIID(0, 1) k = 1, . . . , K are K + 1 normal,
independent, and identically distributed (NIID) random variables. In the context
of hedonic modeling for housing several special cases have been considered
previously in the literature:

Case 1: Restrict σβk
= 0, k = 1, . . . , K, which results in βkt = βk. This is a more

flexible form of the time-dummy hedonic regression model, as the conven-
tional fixed time effects (time-dummies) are modeled as a flexible stochastic
trend μt instead.4 Schwann (1998), Francke and de Vos (2000), and Francke
and Vos (2004) used this model. Schwann (1998) labeled the estimated
exp tμ̂( ) as a “time-series price index.” Like the time-dummy hedonic index,
this approach provides a measure of price change which would be equivalent
to an HI index if βkt = βk is true for all t (this issue was studied in detail by
Silver and Heravi (2007) and the interested reader is referred to their work).
Case 2: Restrict σ σβ βk

= , with Q = Var(σβζktIK) a diagonal matrix. Rambaldi
and Rao (2011, 2013) used this model to compute HI indexes. In this case the
shadow price parameters, βkt, are assumed to be stochastic processes subjected
to independent shocks, ζkt, as in the general case in (10); however, the stan-
dard deviation of each of these shocks is assumed to be of size σβ for all K.
This restriction simplifies the model, but might be overly restrictive.
Case 3: Assume μt ≠ μt−1 and βt ≠ βt−1 and restrict σμ → ∞ and σβk

→∞ .5 This
is the Rolling Window approach (Court, 1939; Griliches, 1961). The model is
estimated over M−periods (such as the popular adjacent two-period rolling
window, Triplett, 2004). We are aware that there is not a single approach to
the implementation of this method. In this paper we will estimate the hedonic
regression over two adjacent periods, t − 1 and t, to obtain the estimates of μt

and βt, roll the window and estimate the regression over t and t + 1 to obtain
estimates of μt+1 and βt+1, and so on. The first set of estimates is used to price
properties in period t and the second to price properties in period t + 1. These
price predictions then enter the corresponding Laspyeres and Paasche formu-
lae to form the Törnqvist or Jevons indexes as required.

4It is a well known result that fixed time effects are a restricted form of a stochastic trend (see
Harvey, 2006).

5We thank an anonymous referee for pointing this out.
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The use of hedonic regressions with time-varying parameters modeled as
stochastic processes to compute and predict price movement in real estate markets
is not new. They have been proposed for the repeat sales approach (Francke,
2010), the time-dummy hedonic indexes (Schwann, 1998; Francke and de Vos,
2000; Francke and Vos, 2004), and the HI approach (Rambaldi and Rao, 2011,
2013).6 The estimation of the parameters as stochastic trends involves smoothing
methods (which will be discussed in Section 4). Both Schwann (1998) and Francke
(2010) highlight the suitability of this approach when dealing with thin markets.
Their robustness is due to the weighting of past and current market information.7

In Section 4 we provide expressions to show how this weighting occurs when using
the KF, the KS, and ROW. In this paper we will not consider Case 1 for two
reasons: first, econometrically it is a special case of Case 2; and if the data are
consistent with Case 1 (that is, the shadow price coefficients are constant over
time), estimation of Case 2 should lead to an estimate of σβk

which is statistically
zero. Second, from an index construction perspective it assumes hedonic charac-
teristics have fixed shadow price parameters over time.

3.1. Controlling for Location

There are a number of ways in which location can be incorporated in hedonic
models. First we consider the specification of εt in (8) with spatial dependence. As
many characteristics associated with the location of a property might not be
measured through the conventional Xt factors (e.g., number of bedrooms and
bathrooms, size of the land) an omitted bias problem arises. A well known option
to account for the omitted bias is to use a spatial lag model in the error term. This
is often referred to as a Spatial Error Model (SEM). The spatial error process has
the form

(11) ε ρ ε σt t t t t u NW u u NID I
t

= + ( )~ ,0 2

where:
εt —Nt × 1 vector of spatially correlated errors with covariance Ht;
ut —Nt × 1 vector of uncorrelated errors (independent and identically
distributed);
ρ —scalar spatial autocorrelation parameter, |ρ| < 1.
Wt —Nt × Nt matrix of spatial weights (with elements wij) with the following
characteristics, wii = 0 for all i
0 ≤ wij ≤ 1 are weights representing the strength of the “neighbor relationship”
of the i-th property with the j-th property sold at time t.
Wt is a row-stochastic matrix (i.e., rows sum to unity).
To compute each wij, the distance between property i and all other properties

sold at time t, j ≠ i, j = 1, . . . , (Nt − 1), must be measured. This can be easily
computed using a triangulation algorithm and the unique coordinates (latitude,

6Knight et al. (1995) proposed a seemingly unrelated regression framework whereby annual regres-
sions are jointly estimated.

7A feature recognized in the real estate modeling literature by the works of Quan and Quigley
(1991).
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longitude) of each property.8 We use Delaunay triangulation9 to generate a set of
closest neighbors around each i (a detailed presentation is provided by LeSage and
Pace, 2009), with weights which are inversely proportional to the distance.

In this case the form of Ht can easily be shown to be

(12) H I W I Wt u N t N tt t
= −( ) −( )− − ′σ ρ ρ2 1 1

since εt ∼ N(0, Ht), and ε ρt N t tI W u
t

= −( )−1
, using (11). It is easy to verify that the

errors of the model in (8) are homoskedastic and not spatially correlated if ρ = 0,
in which case H It u Nt

= σ 2 , as already indicated. The interested reader is referred to
LeSage and Pace (2009) for an introductory, but comprehensive, treatment of
spatial econometric models. One important feature of the specification in (12) is
that Wt is changing over time. As will be shown in the next section, whether one
estimates the model using a ROW approach or an SM approach, the estimator of
μt and βkt will be a function of a time-varying spatial structure if εt is assumed to
follow (11). The formulation is spatially varying and attenuated over time, in the
same spirit as that proposed by Gelfand et al. (2003; see model 4, p. 391).10

A second alternative specification of location is to include spatial regressors
(i.e., as factors added to the Xt matrix). Spatial regressors are measures of the
relative location of each property with respect to landmarks such as bus stops,
schools, parks, and industry. They can be easily generated using the coordinates
data and GIS software. It is also possible to have both the set of spatial regressors
and the spatial error structure in the model. In the empirical section we include all
these alternatives.

Finally, the recent work by Hill and Scholz (2013) has proposed modeling
location by fitting a non-parametric surface to location coordinates and adding
this constructed variable to the hedonic regression as a regressor. They then
estimate the model yearly before computing the HI indexes. We do not consider
this alternative in this paper. This is left for future research.

4. Estimation and Prediction: ROW vs SM

In this section we discuss the difference between a ROW approach and an SM
approach with specific reference to how information is incorporated and weighted
in the estimators of μt and βt = (β1t, . . . , βKt). We discuss in detail when the
estimation approach leads to revisions of the computed RPPI. Finally, we high-
light the role of other parameters of the model (i.e., variance and covariance
parameters), discuss their estimation and their role in inducing revisions of the
indexes.

8Coordinates are readily available as they are routinely provided with transaction level data,
unlike a number of hedonic characteristics which are often missing.

9A Delaunay triangulation for a set P of points in a plane is a triangulation such that no point in
P is inside the circumcircle of any triangle.

10Their work uses dummy variables to model time; however, both their work and that of Rambaldi
and Rao (2011), used here, are based on a spatially varying correlation which is function of unknown
parameters (here σ u

2 , ρ) which are not time-varying. In the estimation section (see Section 4) we discuss
the role of these parameters.
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To aid the discussion we collect the general model in (8)–(11), and write it in
the form (13) and (14)

(13) y Zt t t t= +α ε

(14) α α ηt t t= +−1

where:
Zt = [1 Xt] is an Nt × m matrix; where, and 1 is an Nt × 1 vector of ones.
αt = [μt βt]′; where βt = [β1t ··· βKt]′

ηt = [ξt ζt]′ with Q E t t* = ′( )η η , Q N
diag

K

* ~ ,
,

0
0

0

2

2 2
1

σ
σ σ

μ

β β…( )
⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

α0 ∼ N(a0, Ω0) is an initial condition.
The system in (13) and (14) is known as a state-space representation. One

feature of state-space representations is that they separate the parameters of the
original econometric model (in this case μt, βt, σ σ σ σμ β βu K

2 2 2 2
1

, , … , and ρ) into two
types for the purpose of estimation, namely, the parameters in αt (known as the
state-vector) and the rest (which are labeled as hyperparameters; see Durbin and
Koopman (2012) for discussion of the term). The latter are the parameters that
define what is referred to as system matrices in the state-space literature (see
Harvey, 1989). In the above representation, the unknown hyperparameters are
ψ σ σ σ σ ρμ β β= …[ ]u K

2 2 2 2
1

, , , and they are in Ht and Q*. If ψ is known or an estimate

exists, the state-vector (αt) can be estimated by SM.
These estimates are conditional on ψ. In order to understand how and when

the use of these estimation approaches will lead to revisions, it will be convenient
to present the KF and KS.11

4.1. Kalman Filter Smoother Estimation

Assuming first that ψ is known (see Section 4.5) and we have a sample from
t = 1, . . . , T, we start by considering the time period t = τ. The KF estimator of μτ

and βτ is given by aτ|τ = E(ατ|yτ, yτ−1, . . . , Zτ, Zτ-1, . . . , Z1, a0, Ω0) 12, which can be
written as a recursive formula,

(15) a a Gτ τ τ τ τ τν| |= +− −1 1

where:
vτ = yτ − Zτaτ−1|τ−1 is the prediction error using the parameter estimates at τ − 1,
ντ ∼ (0, Fτ), with size Nt × 1.
F Z Z Hτ τ τ τ τ τ= ′ +−Ω | 1 is the variance-covariance of the prediction error, ντ.

11The presentation here is minimal and only for the purpose of explaining how the estimates
compare to those from ROW. For derivations and more details, see Harvey (1989) or Durbin and
Koopman (2012).

12We note here that we are defining the KF estimate as aτ|τ and not as aτ|τ−1, and thus refer to it as
a “Kalman Filter Smoother.” This definition follows Harvey (1989) in that the KF estimate is condi-
tional on the current time period as well as the information up to τ − 1 (i.e., using both the prediction
and updating equations of the Kalman filter).
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G M Fτ τ τ= −1 is known as the Kalman gain and captures the information gain
from τ − 1 to τ.

M Zτ τ τ τ= ′−Ω | 1

Ω Ωτ τ τ τ| |− − −= +1 1 1 Q*

Equation (15) shows that at a given time period, τ, the estimates of aτ = (μτ, βτ)′
are equal to what they were at time τ − 1, plus an adjustment given by a proportion
(Gτ) of the error we would make in τ if we were using the parameter estimates from
τ − 1 to predict the prices of the properties sold in τ (see definition of ντ). Therefore,
the task in practice is to compute Gτ and ντ when a new time period of data
becomes available which then allows the implementation of the updating in (15).

An assumption about the initial condition (a0, Ω0) is necessary to start the
recursion. The standard practice is to initialize the filter by setting a0 to a fixed
arbitrary value and Ω0 as such that it has a diffuse prior density.13 Standard errors
for these estimates are obtained by computing the square root of the diagonal
elements of the covariance matrix Ωτ|τ, as one would in any other estimation
approach. The variance–covariance is given by

(16) Ω Ωτ τ τ τ τ τ τ| | .= − ′−
−

1
1M F M

The KF can be also written as a weighted sum of past and current informa-
tion. Koopman and Harvey (2003) have shown that that the KF for time period τ
is given by

(17) a yj j
j

τ τ τ

τ

ω| .=
=
∑

1

They provide specific expressions for the ωjτ (which are functions of Gt and νt,
for t = 1, . . . , τ). What is important about this result is that the highest weight is
at τ and these weights decrease towards zero for t further back in time from τ. The
number of past periods with non-zero weights depends on the underlying econo-
metric model and specific dataset.

4.2. Kalman Smoother Estimation

As new information becomes available, it is possible to revise the estimates
aτ|τ. The algorithm that allows this revision is the KS, which is effectively a revision
of the past estimates taking into account the most current information, and its
application is known as state smoothing or simply smoothing. The commonly
known fixed interval smoothing is given by E(αt|yT, yT−1, . . . y1, ZT, ZT−1, . . . Z1, a0,

13A diffuse prior corresponds to Ω0 = κI and letting κ → ∞. In the empirical section we start the
filter at a0 = 0m×1 and Ω0 = 1E + 4 × Im.
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Ω0). Consider the time period t = τ above, we can now use the KS to revise it. The
KS can be written as follows:

(18) a a Cov FT j J j
j

T

τ τ τ τ
τ

α ν ν| | , .= + ( ) −

= +
∑ 1

1

The expression (18) tells us that the KF estimate will be revised by bringing
into the estimation the accumulated information from periods τ + 1 to T (for a full
discussion and details, see Durbin and Koopman, 2012, section 4.4). We can write
(18) as a sum of the weighted information used as well to obtain

(19) a yT jT j
j

T

τ ω| =
=
∑

1

where a plot of the weights in this case would show that the highest weight is given
to t = τ as in the KF. However, both past and future observations in the proximity
of τ will have have a non-zero weight (see Francke, 2010, figure 1, for an example
obtained for his local linear repeat sales model). The previous works that have used
SM and considered price indexes (specifically, Schwann, 1998; Francke and Vos,
2004; Francke, 2010; Rambaldi and Rao, 2011, 2013), have estimated the
parameters using a KS (i.e., as in (19)).We return shortly to the differences created
when KF and KS are used to impute the prices to construct the indexes.

4.3. Rolling Window Estimation

We now turn to the estimation under a ROW approach and then discuss and
compare all these alternatives. In a ROW framework the estimation involves the
use of OLS, or generalized least squares (GLS) if the variance–covariance of εt is
not spherical. Considering the form of the GLS estimator for a two-adjacent
period rolling regression (it is easy to see that (20) reduces to OLS if ρ = 0, as
H It u= σ 2 in that case),

(20) â Z H Z Z H yt t t t t t t t t t t t= ′( ) ′−( ) −( )
−

−( )
−

−( ) −( )
−

−1, 1,
1

1,

1

1, 1,
1

1,,t( )

with variance–covariance,

Ω t t
GLS

t t t t t tZ H Z−( ) −( ) −( )
−

−( )
−= ′( )1 1 1

1
1

1

, , , ,

where the subscript (t − 1, t) is to indicate that the estimate ât is using the current
and immediately past period market information. The expression in (20) is also a
weighting function of available information. To see this let n = Nτ-1 + Nτ be the
number of observations used in the window to estimate the parameters for time τ,
then the ROW estimator is given by

(21) â C yτ τ τ=

where C Z H Z Z Hm n n n n m m n nτ = ′( ) ′×( ) ×( )
−

×( )
−

×( ) ( )
−1 1 1 is an m × n matrix and yτ is an n × 1

vector of log prices. The parameter estimates obtained from this weighting
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function do not distinguish sales in period τ − 1 from those in τ and thus prices are
equally weighted in time. The k-th, k = 1, . . . , m, parameter in âτ is the product of
the k-th row of Cτ and yτ, and therefore a weighed sum of log prices. The parameter
estimates are spatially weighted functions of the observations in the window when
Ht is not σuI2 . It is now easy to see that a ROW approach using an arbitrary
M−periods to compute the parameters will not perform an optimal weighting of
past information. This issue has been raised in the literature before by Pace et al.
(2000). They were concerned about how the information entered the estimation of
the parameters in a time-dummy parameter model. Their proposal was to use a
covariance structure that effectively accounted for the time and space sequence of
sales in the estimation.

4.4. Price Prediction

To study how KF, KS, and ROW estimates enter an imputed index, we first
consider the expression to impute prices. Consider the pricing of house h′ sold in
period T − 1 for the purpose of computing an index of the price change from T − 1
to T. As the model is log-linear, the imputation of the prices at periods T − 1 and
T is obtained from the following expression:

(22) ˆ expP x x ai
h

T
h

T
h

i
′

−
′

−
′

ℑ( ) = ( )⎡⎣ ⎤⎦1 1 |1 �

(23) = +( )ℑ −
′

ℑexp μ βi T
h

ix| 1 |
� �

where i = T, T − 1, “ � ” denotes they are estimates,14 ℑ denotes the information
set used, and thus distinguishes the estimator (KF, KS, or GLS). The information
set is ℑ= −y yi i, 1 when the estimates are those obtained from ROW (GLS),
ℑ= { }−y y yi i, , ,1 1… when the estimates are KF, and ℑ= …{ }−y y yT T, , ,1 1 when the
estimates are KS.

Therefore, the price prediction for T − 1 uses aT−1|T−1 when using the KF, âT−1

when using ROW, and aT−1|T when using the KS. An inconsistency arises when
using KS in that the prediction is made using parameters that have been estimated
using information from time period T which was unknown to the market at time
T − 1. Thus, the choice is between the KF and ROW. Harvey (1989) shows the KF
is an optimal estimator given the information known at that point in time. In
addition, it is practically feasible as it only requires implementation of recursion
(15).

14In the case of spatial errors, (22) is a truncated predictor (see Rambaldi and Rao (2013) for details
and further references). It is well known that the form of the predictor used here (in (22)) is one
alternative, with a second alternative being a “corrected” version given by ˆ exp ˆP xi

h
T
h′
−
′( ) × ( )1 2σε which

is derived from the properties of the log-normal distribution. In our specification, “σε” is a time-varying
function of Wt and ρ when errors are spatially correlated. When there are no spatial errors, the
correction term will be the same for numerator and denominator of the index and thus it cancels out.
In addition, when this correction is merited depends on the normality assumption as well as the
objective of the prediction (for further discussion, see, for instance, Greene, 2012, p. 123).
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4.5. Hyperparameters: Estimation and Their Role in Revisions

In practice ψ is unknown and an estimate is needed. Inspection of the general
model shows that if the estimates of the parameters ψ σ σ σ σ ρμ β β= …[ ]u K

2 2 2 2
1

, , ,
change, estimates of Ht and Q* change as well. When estimating the model under
Case 3 (a ROW approach), all the unknown parameters (ψ and at) can be esti-
mated by maximum likelihood. The most convenient form of the log-likelihood is
given by

(24) ln ; , , ln ln ; ,L y n I W
e e

n n n u n n
u

ψ β μ πσ ρ
σ

ρ( ) = −( ) ( ) + − − ′ ∈( ]2
2

0 12
2

where n = Nt−1 + Nt (if two adjacent periods are used), and e y Z an n n= − ˆ . The
reader is directed to LeSage and Pace (2009) for detailed presentation of maximum
likelihood estimation of spatial models. When ρ = 0 (no spatial errors),
maximization of (24) will yield the OLS estimator.

When estimating the general model under Case 1 or 2, the time series ordering
of the data has to be taken into account and thus the appropriate form of the
log-likelihood is in prediction error form (see Harvey (1989) for detailed presen-
tation). The log-likelihood for a sample of N Ntt

T
=

=∑ 1
transactions over T time

periods is given in this case by

(25) ln ; , ln lnL y Y N F Ft t t
t

T

t
t

T

t t t
t

ψ π ν ν−
= =

−

=

( ) = − ( ) − − ′∑ ∑1
1 1

1

1

1
2

2
1
2

1
2

TT

∑ .

This form is convenient when using the SM because it is written as a function
of νt and Ft which are computed by running the KF algorithm (see definitions
below equation (15)). In practice there are a number of important results that
allow efficient running of the algorithm for the purpose of computing νt and Ft.
For a more detailed exposition of the maximum likelihood estimation of
hyperparameters in state-space models, see Harvey (1989) or Durbin and
Koopman (2012). The main difference between (24) and (25) is that the first is
based on the joint distribution of n observations assumed to be identically distrib-
uted (and independent if ρ = 0), while the second recognizes the time series nature
of the observations as well, which are conditional on the information set at time
t − 1, Yt−1.

To obtain estimates of ψ, a numerical maximization of the log-likelihood for
the unknown parameters has to be carried out using Newton–Raphson type
algorithms. That is, the estimates are given by

(26) ˆ ln .ψ ψψ= ( )argmax L yt |

Our general model follows the standard state-space specification, and thus
the parameters in ψ are not assumed to be time-varying; however, as in any
other statistical estimation, sampling variation means the estimates will change
depending on the sample size used to obtain them. As T becomes larger, or the
number of transactions in each time period are larger, the estimates are expected
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to settle and should not change significantly by the addition of just one or two
time periods.

SM are time series based methods and thus a reasonable time series length is
necessary for the KF to settle and to avoid the estimates being overly dominated
by the initial condition (α0 ∼ (a0, Ω0)). For this reason, when implementing the
numerical maximization of (25) for the estimation of ψ, it is advisable to construct
the log-likelihood without the first d periods (in the empirical illustration below we
set d to the first 12 months of the sample);15 that is, the KF is run from t = 1, but
the sum in (25) is constructed for the period t = d, . . . , T. In practice, once the
initial condition issue has been taken into account, if the construction of the index
starts with a reasonable number of time periods there should not be a need to
re-estimate ψ at every time period. However, when revised estimates of the ψ are
obtained, the KF should be run to revise the estimated parameters at|t given the
updated Ht and Q*. In the empirical section we study how the estimates of ψ
change as more periods are added to the data.

In the case of ROW the parameters ψ are re-estimated within each new
window of M−periods, and thus having more data in the time series dimension is
of no benefit to reduce sampling variation. In the empirical section we study how
the estimates change and how the sample size of the window influences the varia-
tion over windows.

5. Empirical Illustration

In this section we provide an illustration of the main concepts presented in the
previous sections. Our contention is that the KF is theoretically preferred to a
rolling window approach and is the most suitable estimator to compute (22). The
KF is a time series method dependent on an initial condition, and thus in practice
a reasonable number of time periods are required for the estimates of αt not to be
overly influenced by the initial condition. Similarly, a reasonable number of time
periods is needed to obtain a reliable estimate of ψ initially. Re-estimation of these
hyperparameters every time period might not be necessary, making the practical
implementation of the KF less computationally intensive. We explore some of
these issues next.

The data are from a coastal town in the state of Queensland, Australia. The
advantage of this dataset is that the data are from a small and homogeneous
region, constructed by merging transaction sales data from real estate transactions
with local council records, and with the addition of GIS generated regressors. The
disadvantage is that for the initial part of the sample period the number of
transactions per month is not very large; however, this provides the opportunity to
study how thin markets affect the volatility of estimates and the computed indexes.

5.1. Data

The data used were compiled, cleaned, and checked with funding from the
Department of Climate Change and Energy Efficiency, and the CSIRO Climate

15See section 3.3.4 of Harvey (1989) or section 2.9 of Durbin and Koopman (2012) for a detailed
presentation of initialization and convergence of the Kalman Filter.
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Adaptation Flagship, and are a subset of those used to produce some of the results
presented in Fletcher et al. (2011). These data are sourced primarily from one of
Australia’s leading providers of real estate sales transaction data (RPData); a
number of spatial hedonic characteristics, such as distances to landmarks (descrip-
tive statistics appear in Table 1, and regression specification in Table 2), were
added through GIS analysis. Further cleaning was performed as part of the
2011/12 UQ Summer Scholarship Program funded by the School of Economics
and The University of Queensland. The dataset consists of individual transactions
of family dwelling residential property (i.e., units, townhouses, and terraces are not
included) for the period May 1991 to September 2010. Only sales of land with
structure are included (that is, there are no transactions of vacant land). The
number of transactions per month is presented in Figure 1.

The area in this study is in the south east corner of the state of Queensland
(SEQ) and is a coastal area (Moreton Bay Regional Council, see Figure 2). The
markets in the SEQ region went through a boom period between 2001 and 2005
and this is reflected in the number of transactions per month for that period. This
market shows high activity concentrated in the 2001 to 2003 period. The 2008
global financial crisis is noticeable in that the number of transactions drops to
levels similar to the early 1990s and has remained volatile since. The difference
between the data used by Rambaldi and Rao (2011, 2013) and the data used here

TABLE 1

Description of the Dataset

Min Max Mean Median S.D.

Sale price 15,000 1,250,000 226,352 210,000 130,820
Month of sale 1 12 6 6 3
Year of sale 1991 2010 2002 2003 5
Land characteristics
Lot size (m2) 261 10,220 933 630 1068
Small lot < 500 m2 0 1 0 0 0.29
Large lot > 2000 m2 0 1 0 0 0.28
Dist_Coast (m) 15.81 5749.44 1313.33 1283.20 903.67
Dist_Waterway (m) 5.00 863.54 263.53 245.20 157.31
Dist_Parks (m) 7.07 983.93 139.61 115.43 112.86
Dist_Schools (m) 10.00 6482.48 586.53 304.51 998.07
Dist_Shops (m) 14.14 4796.77 493.89 364.59 471.45
Dist_OffensiveIndust (m) 175.00 8378.48 2908.76 2260.27 1867.23
Dist_BusStop (m) 15.00 4349.01 419.68 212.66 729.45
Dist_RailStn (m) 2453.59 13,583.90 7067.73 6700.23 1765.23
Dist_BoatRamp (m) 55.90 6294.16 1940.04 1528.61 1537.51
Dist_PubsClubs (m) 14.14 5336.24 1346.46 1177.65 912.40
Dist_Hospitals (m) 10.00 13,255.00 3163.51 2310.68 2622.82
Structure characteristics
Bedrooms 0 8 3 3 1
Bathrooms 1 4 1 1 1
Carspaces 0 12 2 2 1
Structure footprint (m2) 35.82 920.90 220.00 205.24 89.43
Max_Height_Building (m)a 2.27 27.02 8.72 8.14 4.58
Age (years) 0 86 16 15 11
Number of transactions 9984.00

aThis is the height of the building in meters above sea level.
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is that their data were for the city of Brisbane, the state capital of Queensland, with
a population of over 1 million with heterogeneous submarkets (covering 1985–
2005). The data used here are from a smaller market located north of the city of
Brisbane in a few of the urban centers surrounding the Bay, which act as satellite
suburbs to Brisbane in that a substantial proportion of the population travel into
Brisbane every day to reach their employment location.

Table 1 presents the set of hedonic characteristics available for the study with
their descriptive statistics. They have been divided into two groups, “land charac-
teristics” and “structure characteristics.” The first includes the size of the land and
two dummy variables that identify small and large lots. The definitions of small
and large lot are those published by the Council of the area under study. In
addition, a number of measures are used to model the spatial location of each
property. These are in the form of distance to amenities and landmarks. These
were obtained through GIS analysis. The characteristics of the structure include
the standard set available from RPData (bathrooms, bedrooms, car park spaces),
the footprint and height of the structure which were obtained through GIS, and
the age provided by the local Council.

5.2. Estimation and Comparison of Predictions

In this empirical exercise we compare Cases 2 and 3 of the general model16

under four alternative specifications for location. The first is the model without
controlling for location (ρ = 0 and there are no spatial regressors in the model).
The second has ρ = 0 and, in addition to the land and structure regressors, spatial

16Allowing the standard deviation of the shock to shadow price parameters, σβ, to vary over K or
at least over subsets of the regressors is appealing; however, it is left for further research.

Figure 1. Number of Single Transactions Per Month
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regressors are included to model location (see Table 1).17 This specification will be
labeled “No Spatial Err, Spatial Reg.” The third has a spatial error, ρ ≠ 0, but
excludes all spatial regressors measures from the regression, and thus the location
of the property is only controlled through the spatial error. This specification is
labelled “Spatial Err, No Spatial Reg.” The final specification combines both
spatial regressors as well as spatial errors in the model specification (“Spatial Err,

17Dist_BusStop and Dist_Shops are not significant and so they are not included in the results
presented here.

Figure 2. Polygon Marking Area Covered by Study (map sourced from the Moreton Bay Regional
Council)
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Spatial Reg”). The rationale behind these is to study the possible trade-off of
modeling “location” by comparing the use of a number of spatial regressors as
explanatory variables (eight in this case) to the alternative of a spatial error model.
Both specifications require the location coordinates of the property (latitude and
longitude). Distance measures are created through the use of coordinates, data
layers describing the location of landscape features, and GIS software, while the
construction of a spatial weights matrix (to use the a spatial error) only requires a
triangulation algorithm readily available in Matlab. This latter approach could be
appealing to statistical offices as the data manipulation requirements are lower.

In all cases, the models estimated are log-linear in all regressors except for lot
size and house size which are also log-transformed.18 Monthly predictions are
produced in all cases. Although we could compute quarterly and annual indexes,
constructing a monthly index is appealing at at least two levels. First, it is a good
test for the methods as the sample sizes are small; second, it shows that it is possible
to construct monthly indexes which is of interest to both public and private
institutions (e.g., central banks track housing prices monthly as one important
indicator of economic activity, investors use them to compare returns to other
assets).

When errors are assumed to be spatially uncorrelated, the covariance matrix
Ht, (12), reduces to σuI2 and ψ σ σ σμ β= [ ]u

2 2 2, , . In this case the ROW estimation is
based on a rolling window of two adjacent periods estimated by OLS. We start by
studying the overall fit of the alternative specifications, and the sensitivity of
hyperparameters estimates to the length of the sample used, the model specifica-
tion, and the estimator.

5.2.1. Overall Model Fit and Sensitivity of Covariance
(Hyperparameters) Estimates

Table 2 presents a comparison of the specifications by treatment of location
estimated over three sample lengths. The purpose of presenting these results is
two-fold. First, they provide diagnostics to choose the best fitting model for the
data and evaluate the robustness of the estimation of ψ to sample size. Second,
they allow us to show that the estimates of σu

2 and ρ are very close in value,
whether they are estimated running the Kalman filter algorithms in the state-space
form of the model or OLS/GLS in a regression model of the full sample. The
usefulness of this result is that we can use the latter estimates as initial values in the
optimization routine to obtain the MLE of ψ (see equation (26)).

Table 2 presents estimates of ψ, the log-likelihood (lnL) value, and computed
Bayesian Information Criteria (BIC) for all the model specifications estimated
by the Kalman filtering algorithms (column labeled state-space)19 or by running
a conventional regression with year dummy intercepts (column labeled fixed

18Alternative hedonic specifications could be tried, such as use of splines for age, lot size, and
measures of location to capture possible non-linearities. We have not explored these possibilities in this
paper.

19The estimation code was written by the first author in Matlab and will be made available upon
request.
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parameter) for the corresponding sample length20. To illustrate how the ψ esti-
mates change as more data become available over time, three samples have been
used. The first covers the first 56 months of the sample, 1991:5–1995:12; the second
covers the longer period of 104 months, 1991:1–1999:12; and the third covers the
complete sample, 1991:5–2010:9 (233 months). The ROW approach estimates of
ψ21 cannot be presented in the table as ROW produces estimates of the ψ, log-
likelihood, and BIC which are different in every window. To allow comparison of
the estimates of ψ obtained using ROW, Figure 3 plots the estimates of the two
covariance parameters, σu and ρ.

Inspection of the estimates across model specifications, sample sizes, and

estimators indicates a remarkable similarity in the estimates of ψ σ σ σμ β= [ ]u
2 2 2, ,

across model specifications, especially within a particular sample size. The param-
eter σu

2 represents variance of the noise in the hedonic regression. It is estimated to
be between 0.07 and 0.08 when the sample size used is 56 months (1470 transac-
tions) or 104 months (2488 transactions), but decreases to 0.05 when the sample
used is 233 months (9984). The estimate of ρ is smaller when location is measured
by including both distance regressors and a spatial error structure in the model;
otherwise it is around 0.4 across all models, estimators, and sample sizes. The
estimates of σμ

2 and σβ
2 are identical across models and sample sizes. The estimate

of σβ
2 is very small (order of 10E-10 to 10E-12). This could be due to the overly

restrictive specification of a common σβ (instead of σβk
), and the issue deserves

further research. Notwithstanding the restriction, an advantage of the state-space
specification is that it is flexible and thus the rate of variation of the state param-
eters, μt and βt, is determined by the data for the market under study (see further
discussion in Section 5.2.2).

Figure 3 shows the estimates from ROW. In this approach estimates of σu
2

and ρ vary over windows. When the number of transactions per month is small (as
it is at the beginning of the sample), the variation over windows can be very
substantial. The estimates are much more settled during the second part of the

20The estimation is by least squares if ρ = 0 and by maximum likelihood, using the sem.m routine
of the Spatial Econometrics Toolbox in Matlab (http://www.spatial-econometrics.com/), if errors are
assumed spatial.

21They are estimated using two periods of consecutive data by OLS or MLE if spatial errors are
assumed.

Figure 3. Rolling Windows Estimates of σ u
2 and ρ; Model: Spatial Err, No Spatial Reg
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sample (2000 onwards) due to the larger sample sizes. Although very volatile, the
average estimate of ρ over the whole sample sits around 0.3 in the 90s and 0.4 in
the 00s, which is roughly consistent with the estimate from the KF. Likewise, the
estimates of σu

2 appear to be in the range 0.07–0.08, on average, in the first part of
the sample and drop to around 0.04–0.05 on average for the second part of the
sample, again consistent with the state-space and time-dummy specifications.

The overall fit of the models has been measured using the Bayesian Informa-
tion Criteria. As expected the time-varying parameters models dominate the time-
dummy regressions.22 The overall conclusion for location is that the dominant
model for this dataset is the one with spatial regressors and no spatial error, and
this is independent of the sample size. The second preferred model is that with both
spatial errors and regressors, the third is the model with spatial errors only, and the
last model is the one when location is not modeled in any form. These results
confirm the importance of controlling for location.

The results indicate that the estimates of the hyperparameters attached to the
time-variation of μt and βt (σμ

2 and σβ
2) and the spatial correlation parameter, ρ,

hardly (if at all) change as more time periods of data become available (see
columns labeled State_Space as sample sizes increase). The parameter σu

2 , which is
attached to the overall noise in the hedonic model, is about the same size when
using 56 or 104 months of data but reduces considerably for the sample of 233
months. This is expected as the overall noise reduces the longer the sample, leading
to reductions in the standard errors of the estimates of μt and βt. The practical
implication of this result is that re-estimation of the hyperparameters is not needed
with every addition of a new time period. Thus, the recursion in (15) can be com-
puted, given ψ̂ , by simply plugging in prices and property characteristic data as
they become available to obtain the next time period’s estimate of at and compute
the HI indexes. We do not suggest that the hyperparameters need never be
re-estimated, but rather that this can be done sporadically to capture potential
changes in these structural parameters which could occur over time.

5.2.2. Trend and Shadow Prices Parameter Estimates

We start by presenting a summary of how the estimates of μt and βt vary
between KF and ROW based estimates for the selected specification (No Spatial
Err, Spatial Reg). We present the complete comparison between (No Spatial Err,
Spatial Reg) and (Spatial Err, No Spatial Reg) in the Appendix. Figure 4 presents
the estimates of four parameters of the model chosen to provide the illustration: μt,
βbaths,t, βlotsize,t, βage,t.23 The KF are the estimates from the Kalman filter smoother
(15) with hyperparameters obtained using the first 104 months of data (see
Table 2). In the case illustrated, the estimates of the hyperparameters have not
been updated over the last ten years of the data. Although this update frequency
might seem insufficient, re-running the analysis with the hyperparameters updated
every three years yielded virtually unchanged estimates of the μt and βt. The main
difference is in the size of the standard errors, which become smaller.24 The

22except in the case of T = 104 when location is omitted from the model.
23The complete set of estimates is available from the authors.
24Results available from the authors.
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estimates of these selected parameters with standard errors are also presented in
the Appendix. Although the hyperparameters do need updating occasionally, they
change slowly. Once they have been estimated with a reasonable sample size, the
addition of one or two months of data leads to only minimal changes in the
hyperparameter estimates, so updating every period is unnecessary. Estimates
labeled ROW are obtained using the two-period rolling window approach (t − 1
and t) in each estimation window.

Because the model is log-linear, the shadow prices for the parameters bath-
rooms and Age are given by βbaths,t × Pricet and βage,t × Pricet, respectively. These
examples illustrate that the ROW approach produces unreasonably volatile esti-
mates of the shadow prices for these relatively stable parameters compared to the
state-space approach. With the exception of the first two years, during which it is
settling, the estimates from the KF exhibit a slow time-varying trend as expected.
In contrast, the ROW estimates are highly volatile, and often unstable. For the
parameter Age, for instance, we can observe a considerable number of window
estimates that are positive, indicating the structure appreciates with age, which is
clearly not theoretically correct, except in the case of vintage effects. Morover, the
volatility of ROW estimates is clearly related to the influence of the composition
and size of the sample in each estimation window. The number of transactions
available per window in the second half of the sample is much larger, as is obvious
from Figure 1. This translates into much less volatile ROW estimates over the
portion of the sample after the year 2002. In contrast, the state-space based
estimates exhibit a consistent, relatively low volatility across the entire sample.

In general we find the rate of variation in the elements of βt to be very slow for
this market over the sample period. This may be due to a truly low level of
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Figure 4. ROW and KF Estimates of Selected Parameters
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variability in the market studied, or due to the restrictions placed on σβ as part of
the model structure employed. In comparison to the current study, Rambaldi and
Rao (2011, 2013) used the same model with data for the city of Brisbane over the
period 1985–2005 and found the variation in some of the parameters to be larger
than those found here. Without further analysis, however, it is not possible to
conclude whether the low variation in βt is intrinsic to the study market, or due to
the restrictions placed on σβ as part of the analysis.

5.3. Computed Price Indexes

In this section, we study the effect of using predictions based on ROW and KF. A
comparison including estimators from alternative models of location is presented in the
Appendix. A larger number of results and comparisons are available from the authors.

Figure 5 presents the computed Jevons (J) and Törnqvist (T) indexes using ROW
and KF estimates, as well as the monthly median of the observed prices which has been
converted into an index by setting the 1991:6 median price to one and referring each
month’s median to that base. This is shown to provide a quality unadjusted estimate of
the evolution of prices as a comparison (labeled median price). There are periods when
the median price is volatile, as is expected. The index’s base is 1991:6 = 1; however, to
facilitate visual depiction, the top panels show the evolution of the index from 1991:6–
1995:12 and 1996:1–1999:12, and the bottom panels show the evolution from 2000:1–
2005:12 and 2006:1–2010:09. At the beginning of the sample there is very little visible
difference between the median price, the ROW and the KF based indexes. This is
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Figure 5. RPPIs Base 1991:6 Using Model with Spatial Regressors and No Spatial Error; Bottom
Panels are Based on Hyperparameters Estimated with Sample 1991:6–1999:12
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expected because KF parameter estimates are volatile. From 1996 it becomes more
apparent that the volatility of the median price is higher than that of the constructed
indexes, and some separation between the ROW and KF based indexes is visible. It is
clear there was not much movement in the market over this period. The indexes
remained around one and only started to increase above one from around 1999. A
period of rapid increase is observed between 2001 and 2003, prices plateaud in 2004–
2005 and rose again until the global financial crises (GFC) where there was a sudden
drop in early 2008. Prices remained stable to slightly rising until early 2010 where a
decrease is observed again.

The period from 2000 onwards (two bottom panels) is where the bulk of transac-
tions were observed and where the behavior of the different indexes and the median
price differ substantially. Starting with the KF based indexes, we note that the J and T
indexesareverysimilar invalueuntilaround2004,where theydivergebetween2004and
up to the GFC, at which point they converge for a couple of months, diverging again for
the rest of the period. The movement of the T index is that of a smoothed trend of the
median price, whereas the J index has a tendency to deviate more from the median. This
separation arises from two possible sources interacting with the weighting of each index.
The first source is the proportion of properties sold in the upper and lower part of the
price distribution during heated and thinner markets. The second is a differential price
change experienced by properties in the upper vs the lower part of the price distribution
during heated and very slow market periods.

Consider a period of high demand, leading to rapidly rising prices, similar to
that experienced in this market from mid 2001 to the end of 2003 (as evidenced by
the large number of transactions illustrated in Figure 1). In this case all types of
property might be rising in value similarly and thus the two indexes are very close.
Consider now the period leading up to the global financial crises (2006–2007). Prices
are increasing, but the market is not moving as rapidly (the number of transactions
is more volatile; see Figure 1). In this case, the price changes of properties in the
upper and lower parts of the price distribution might be different, and it seems
reasonable to assume that the ratio of lower priced to upper priced houses in the
market might be higher than in the previous situation. Given that the J index weights
the transactions equally, the value of the index will be above that of the T index. In
the early 2008 period when the market was hardly moving (note the significant drop
in the number of transactions in Figure 1), the two indexes converge again as all
types of property suffered similar price decreases during the GFC.

In contrast, none of these patterns are visible when the indexes are computed
from ROW estimates. The J and T indexes are virtually indistinguishable over the
whole sample. In general they are more volatile than their KF counterparts and
higher in value. A large difference opens between the ROW and KF based indexes
in January 2004 (see bottom left panel of Figure 5). The index values at this point
are: median price 2.76, J-KF is 2.94, T-KF is 2.86, J-ROW is 3.03, and T-ROW is
3.10. This coincides with a sudden drop in the number of transactions which
commences towards the end of 2003 and lasts over the 2004–2005 period, indicating
a slower moving market over the period. It is clear that the small samples affect the
ROW-based index greatly at this point. The level of the ROW based indexes persists
above that of the KF based indexes and the median price for the rest of the sample
period. This is an example of a chain drift in the hedonic index.
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6. Conclusions

In this paper we consider the relationship between Törnqvist and Jevons
hedonic imputed indexes and some of the choices of econometric estimation and
model specification made to impute prices. First, we compare the rolling window
estimation approach, which is popular in the price index literature, to estimation by
smoothing methods. Second, we compare two alternative approaches to controlling
for property location in the model.

The main difference between the rolling window and the smoothing methods is in
the way information is weighted. We show that the Kalman filter is the most appro-
priate approach for the task as it optimally weights current and past market informa-
tion when computing the indexes. The rolling window approach does not produce
estimates that are attenuated over time, because in an M −period rolling window there
is no recognition of the time series ordering of the transactions. The proposed Kalman
filter approach is simple to compute and does not require frequent revisions of the
published index as new data become available.

Using the data on the individual properties’ latitude and longitude, two
alternative approaches to control for property location are studied. The first is the
use of a spatial lag model in the error term and the second is the use of spatial
regressors generated using GIS software. For the market under consideration the
model with spatial regressors and no spatial errors performs best (using BIC).

We construct monthly indexes. There is a substantial difference in the constructed
Törnqvist and Jevons indexes based on the Kalman filter and the rolling window
approach. The indexes based on the rolling window are more volatile and appear to be
adversely affected by sharp turns in the market. This leads to chain drift in the computed
indexes.This isbecause in thinmarkets thenumberof transactionsdropsand,unlike the
Kalman filter, the rolling window approach does not link to previous transactions. In
addition, the equal weighting of transactions within a window results in ROW being less
sensitive to turns in the market which can result in over/under prediction of prices. The
Törnqvist and Jevons indexes differ in value during periods of market volatility. This is
expected given the different weighting of transactions between them and the likelihood
that the rate of change in prices differs between properties at the high and low end of the
price distribution during periods of volatile markets.
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