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Similar looking Lorenz curves can imply very different income density functions and potentially lead to
wrong policy implications regarding inequality. This paper derives a relation between a Lorenz curve
and the modality of its underlying income density: given a parametric Lorenz curve, it is the sign of its
third derivative which indicates whether the density is unimodal or zeromodal (i.e., downward-sloping).
The density modality of several important Lorenz curves such as the Pareto, Weibull, Singh–Maddala
parametrizations and hierarchical families of Lorenz curves are discussed. A Lorenz curve performance
comparison with Monte Carlo simulations and data from the UNU–WIDER World Income Inequality
Database underlines the relevance of the theoretical result: curve-fitting based on criteria such as mean
squared error or the Gini difference might lead to a Lorenz curve implying an incorrectly-shaped
density function. It is therefore important to take into account the modality when selecting a parametric
Lorenz curve.
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1. Introduction

In the macroeconomic field of growth and development it is of interest to
analyze not only a country’s total GDP but also how it is distributed across the
population. Inequality is often expressed with a Lorenz curve (LC) L(p), devel-
oped by Lorenz (1905), which links the cumulative income share L to the cumu-
lative share p of people in the population earning an income up to that level. Very
similar looking LCs can, however, imply starkly different shapes of the underlying
income density f(x). This insight is the main motivation for this paper.

Consider the two LCs in Figure 1. They are of the Singh–Maddala bipara-
metric form, with different parameters, but they have the same Gini coefficient and
indeed look very similar. Now turn to the underlying income density functions in
Figure 2: their shapes are very different. It is particularly striking that LC1 implies
a downward-sloping, zeromodal density, whereas LC2 has a unimodal one. A
zeromodal density shows a higher proportion of relatively poor earners and no real
middle class, unlike a unimodal one. This can have important policy implications.
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LC1 (zeromodal, a=0.9, q=7, Gini 0.58)
LC2 (unimodal, a=1.2, q=2, Gini 0.58)

Figure 1. Two Examples of Singh–Maddala LCs with the Same Gini Coefficient of 0.58
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LC1 (zeromodal, a=0.9, q=7, b=12.35, Gini 0.58)
LC2 (unimodal, a=1.2, q=2, b=2.08, Gini 0.58)

Figure 2. Densities for the Two Singh–Maddala LCs from Figure 1 with the Same Gini
Coefficient of 0.58
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Also it was pointed out by Dagum (1999) and Kleiber (2008) that wealth densities
tend to be zeromodal, whereas income densities are mostly unimodal unless a
country is very poor and overpopulated. So how can a researcher working with the
two similar LCs from Figure 1 and the same Gini coefficient tell which of them has
a unimodal and which a zeromodal density?

This paper presents a link between an LC and the shape of its density function:
it argues that the third derivative of an LC indicates the modality of its underlying
density. So it is not necessary to derive the density explicitly (which can be tedious).
The theoretical result is derived in Section 2. Sections 3 and 4 discuss the density
modality of a number of important uniparametric and multiparametric LCs. In
Section 5 a Monte Carlo simulation illustrates the practical relevance of the density
modality for a researcher fitting LCs to data points: curve-fitting based on mean
squared error or Gini difference often leads to an LC with the wrong density modality.
Section 6 presents a brief empirical application with a worldwide dataset and Section
7 concludes. Some technical derivations have been relegated to the Appendix.

2. Relation between the Lorenz Curve and the Modality of its Density

Following Pakes (1981) an LC L(p) can be defined formally by:

Definition 1. A function L(p), continuous on [0,1] and with second derivative L�(p),
is a Lorenz curve (LC) if and only if

(1) L L L L in( ) , ( ) , ( ) , ( ) ( , ).0 0 1 1 0 0 0 0 1= = ′ ≥ ′′ ≥+ π

A density f(x) with mean m, cumulative distribution p = F(x) and its inverse
function x = F -1(p) is related to the LC L(p) by the following formula (see
Gastwirth, 1971; Kakwani, 1980):

(2) F L− = ′1( ) ( ) .π π μ

Hence, starting with a given income density with f (x) and p = F(x), one
can obtain the LC as follows: find the inverse cumulative distribution function
x = F -1(p) and divide it by m to obtain the slope L�(p) of the LC. Integrating with
respect to p and making sure that the properties from Definition (1) are fulfilled
gives L(p).

Let us now formally define the modality of the density function f(x) in terms
of sign changes in its first derivative f �(x):

Definition 2. The modality of a continuously differentiable density f(x) on [xL, xU] is
the number of local maxima �x x xL U∈( , ) where

(3)

′ =
′ > ∀ ∈ ∧ <
′ < ∀ ∈ ∧ >

⎧
⎨
⎪

⎩⎪

f x

f x x X x x

f x x X x x
N

N

( ) ,

( ) ,

( ) ,

�
� �
� �

0

0

0

with �XN denoting the neighborhood of the point �x.
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In the following we will make use of a result by Arnold (1987), who differen-
tiates (2) with respect to x and summarizes the relation in his theorem:

Theorem 1. If for the Lorenz curve L(p) the second derivative L�(p) exists and is
positive in an interval (x1, x2), then F(x) has a finite positive density in the interval
( , ) ( ( ( )), ( ( )))x x L F x L F xL U = ′ ′+ −μ μ1 2 which is given by

(4) f x
L F x

( )
( ( ))

.=
′′

1
μ

Proof. See Arnold (1987). �

A key contribution of this paper is the following theorem on the relation
between the LC and the modality of its density:

Theorem 2. If the LC L(p) has a third derivative L�(p) and the cumulative distri-
bution F(x) has a finite positive and differentiable density f(x) in the interval (xL, xU),
it holds:

• If and only if L�(p) > 0 "p ∈ (0, 1), then f �(x) < 0 "x ∈ (xL, xU). This means
that f (x) is zeromodal and downward-sloping.

• If and only if L�(p) < 0 "p ∈ (0,1), then f �(x) > 0 "x ∈ (xL, xU). This means
that f(x) is zeromodal and upward-sloping.

• If and only if L�(p) = 0 "p ∈ (0,1), then f �(x) = 0 "x ∈ (xL, xU). This means
that f(x) is constant; the distribution is uniform.

• If and only if ′′′ < ∀ < =L F x( ) ( )π π π0 � � and ′′′ > ∀ > =L F x( ) ( )π π π0 � � , then
′ > ∀ <f x x x( ) 0 � and ′ < ∀ >f x x x( ) 0 �. This means that f (x) is unimodal with

mode �x.
• In general: if and only if L�(p) has n � 1 sign changes from L�(p) < 0 to

L�(p) > 0 occurring at n points �π i (with i = 1, . . . , n), then f �(x) shows the
corresponding sign changes from f�(x) > 0 to f �(x) < 0 occurring at the n
points �xi (with i = 1, . . . , n). This means that f (x) is n-modal with modes
at �xi (with i = 1, . . . , n).

Proof. Differentiating (4) with respect to x, one arrives at

(5) ′ = −
′′

′′′f x
f x

L F x
L F x( )

( )
[ ( ( ))]

( ( )).
μ 2

Note that f (x), m and [L�(F(x))]2 are positive, so there is a negative relative
between f �(x) and L�(F(x)). From Definition 2 one can express the modality of a
density in terms of f �(x), with a sign change in f �(x) occurring at a mode �x. The
combination of these two results is the relation between L�(F(x)) and the density
modality as stated in the theorem, with a sign change in L�(F(x)) corresponding to
a mode �x. �

Some of the cases from Theorem 2 are more practically relevant than
others: the second and third case, upward-sloping zeromodal and constant income
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densities have been included here for mathematical rigor, but are of limited prac-
tical use and will be neglected henceforth. Because of their empirical importance
for income and wealth distributions, the focus of the remainder of this paper will
be on unimodality and (downward-sloping) zeromodality, although according
to Theorem 2, the theoretical result applies to distributions of a higher modality
as well.

Summarizing, one can say that it is the sign of the third derivative of the LC
which determines the modality of the underlying density function. By Definition 1,
the first and second derivatives of an LC are positive. If the third derivative is
positive as well, the density is zeromodal (and downward-sloping), but if its sign
changes n-times from negative to positive, the density is n-modal. This means that
given any parametric LC, one can infer the shape of the underlying density just
from looking at its third derivative, without explicitly deriving the density (which
can be tedious). The following sections will discuss the implications of this insight
for LC fitting in practice.

3. The Density Modality of Some Uniparametric LCs

A number of parametric LCs have been proposed to fit empirical data and
they can have one or more parameters; for an overview see Ryu and Solttje (1999)
and Sarabia (2008).1 To start the illustration of Theorem 2, this section will focus
on single-parameter LCs, which are known for their simplicity, ease of parameter
interpretation, and feasibility in the presence of scarce data.

3.1. The Pareto, Chotikapanich, and Rohde LCs

As examples, let us consider the well-known Pareto LC (see Arnold, 1983) and
the forms proposed by Chotikapanich (1993) and more recently by Rohde (2009).2

Their parametric forms L(p) are given in the first three rows of Table 1. There one
can also see their third derivatives L�(p), which, intriguingly, are all positive on
the whole domain. According to Theorem 2, this means that the income density
functions associated with these three LCs are zeromodal.3 One should bear in mind
that these LC parametrizations are used in empirical studies with income data—
which is often unimodal. One could argue that, given the positivity restriction of
L�(p) and L�(p), it is more obvious to find single-parameter forms whose third
derivative is also positive rather than sign-changing. Indeed, expressions for the

1For the merits and drawbacks of parametric LCs compared to their non-/semiparametric
counterparts, see Ryu and Slottje (1999). Research is advancing in both strands; consider, for example,
Sarabia (2008) and Rohde (2009) on parametric LCs and Hasegawa (2003) and Cowell and
Victoria-Feser (2007) on non-/semiparametric LCs. One should be aware that the structural assump-
tions underlying parametric LCs might be a limitation, but they offer the only feasible estimation
approach in the presence of grouped data.

2As Sarabia et al. (2010) have pointed out, this form can be considered a reformulation of the
parametrization proposed by Aggarwal (1984).

3Because the density functions of these parametric LCs are known, one could also look at them
directly to check their zeromodality. For instance, Rohde (2009) has derived the income density of his

LC as f x
x

x( )
( ) ( )

;= − ∀ ∈ −
−

⎡
⎣⎢

⎤
⎦⎥

1
2

1 1
13

β β μ β μ
β

βμ
β

. However, Theorem 2 allows us to infer its zero-

modality without having to derive the functional form of the density explicitly.
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latter tend to be algebraically more involved, as we will see with the Lognormal
and Weibull forms, as well as in the next section on multi-parameter LCs.

3.2. The Lognormal LC

A widely-used example of a unimodal income distribution is the Lognormal,
whose density is given by

(6) f x
x

e
log x

( ) ,
( ( ) )

=
− −

1

2 2
2

2

2

πσ

μ
σ

with shape parameter s and scaling parameter μ .4 The one mode is located at

�x e= −μ σ2
, below the mean of μ

μ σ

=
+

e
2

2 (see also Aitchison and Brown, 1957). Row
4 of Table 1 shows the Lognormal LC as presented by Sarabia (2008)

(7) L( ) ( ( ) ),π π σ= −−Φ Φ 1

where F(x) denotes the cumulative distribution function of the standard normal
distribution of x. Note that the LC depends only on s because the scaling
parameter μ drops out in the step of dividing by the distributional mean. Crucial
for our analysis is again the third derivative, because according to Theorem 2 the
unimodality of the density implies that it must be sign-changing. In fact, one can
show that the Lognormal LC’s third derivative

(8) ′′′ = ′′ − ⋅ − − ⋅ ′′− − − −

L ( )
( ( ) ) ( ( )) ( ( ) ) ( ( ))

[ (
π φ π σ φ π φ π σ φ π

φ
Φ Φ Φ Φ1 1 1 1

ΦΦ

Φ Φ Φ
Φ

−

− −
−

−

−
′ − ⋅ ′ − − ⋅

1 4

1 1
1

13

( ))]

( ( ) ) ( ( ))
( ( ) )

( ( ))
(

π

φ π σ φ π φ π σ
φ π

′′⎡
⎣⎢

⎤
⎦⎥

−

−

φ π

φ π

) ( ( ))

[ ( ( ))]

2 1

1 4

Φ

Φ

is sign-changing from negative to positive, with the change occurring at
� �π σ= = −F x( ) ( )Φ .

3.3. The Weibull LC

As this paper focuses on the relation between the LC and the modality of the
underlying income density, one functional form deserves particular attention: the
Weibull density and distribution function given by

(9) f x
b
a

x
a

e
b x

a

b

( ) = ( ) − −( )1

and

(10) F x e
x
a

b

( ) = −
−( )

1

4In the notation of this paper m stands for the distributional mean, which is why I resort to labeling
μ the parameter of the Lognormal distribution otherwise known as m.
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for x > 0, with scaling parameter a > 0 and shape parameter b > 0. The Weibull
distribution is a special case of the Generalized Beta distribution. In this context,
its ability to model income densities has been analyzed by McDonald (1984) and
McDonald and Ransom (2008).

The reason why this density is so appealing to our analysis lies in the flexibility
of b: for b � 1, the density is zeromodal, for b > 1, it is unimodal, as shown in
Figure 3. The scale parameter a determines the location of the mode and how far
the density is spread out, but the shape is entirely captured by b. In the derivation
of the associated LC, a drops out so that we have a single-parameter LC depending
only on b. Its functional form is

(11) L
log

b

b

( )
( ),

,π
π

= −
− − +( )

+( )1
1 1

1

1
1

Γ

Γ

where Γ( )α α= − −∞

∫ t e dtt1

0
is the Gamma function and Γ( , )x t e dtt

x
α α= − −∞

∫ 1 is the

upper incomplete Gamma function.
The LCs of the four densities from Figure 3 are plotted in Figure 4, showing

that higher values of b unambiguously imply less inequality.
Row 5 of Table 1 presents the Weibull LC and its third derivative
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Figure 3. Weibull Density Functions with Different a and b Parameters
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(12) ′′′ = − −

+( ) −
− + − −

−

L
log

b
b

b b log
b

( )
( ( ))

( )
[ ( ( ))].π π

π
π1

1
1

1
1 1

1
2

2 2Γ

According to Theorem 2, the sign of this expression determines the modality
of the density. As the fraction is unambiguously positive, we only need to consider
the term in square brackets: for 0 < b � 1, [1-b + b(-log(1-p))] is positive as well,
hence the third derivative is positive and the associated density zeromodal.
Conversely, for b > 1, [1 - b + b(-log(1 - p))] is negative for small p and positive

for larger p, with the sign change occurring at �π = −
−

1
1

1
eb . This point refers to the

mode �x a
b

b
= −( )1

1
1

of the unimodal Weibull density for b > 1.

4. The Density Modality of Some Multiparametric LCs

After discussing the modality of some single-parameter LCs, let us now
apply Theorem 2 to LCs with more than one parameter. These are very important
in practice but do entail an increased complexity in estimating and interpreting
their parameters as compared to their single-parameter counterparts. This section
starts by discussing the modality of two widely-used multi-parameter LCs, the
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Singh–Maddala and the Elliptical LC, and focuses then on two hierarchical LC
families. A general result for the modality of multi-parameter LCs of these families
in terms of their single-parameter baseline functions proves very useful.

4.1. The Biparametric Singh–Maddala LC

The distribution proposed by Singh and Maddala (1976) has been shown to
be very accurate in fitting income and wealth data (see Kleiber and Kotz, 2003). Its
density and distribution functions

(13) f x
aqx

b
x
b

a

a
a q( ) =

+ ( )⎛
⎝⎜

⎞
⎠⎟

−

+

1

1

1

and

(14) F x
x
b

a q( ) = −

+ ( )⎡
⎣⎢

⎤
⎦⎥

1
1

1

involve the three parameters a, b, q > 0 with aq > 1. b is only a scale parameter and
does not appear in the biparametric LC presented by Sarabia (2008)

(15) L a q I
a

q
a

t t dt

q

a
q

a

( , , ) ,
( )

( )

π
π

= + −( ) = −

− −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

1 1

1 1
1

0
1 1

1 1 1
11 1

1 1
1

0

1

1

1

− −

− −

∫
∫ −

( )

( )

,

π q

t t dta
q

a

where Ix(m, n) denotes the incomplete beta function ratio

(16) I m n
t t dt

t t dt

B x m n
B m nx

m nx

m n
( , )

( )

( )

( , , )
( , )

.=
−

−
=

− −

− −

∫
∫

1 1

0

1 1

0

1

1

1

For the analysis on the third derivative and the density modality, one needs to
differentiate (15) three times, yielding

(17) ′′′ =
− −

⎛
⎝⎜

⎞
⎠⎟

−

⋅ + −( )

−
− −

L a q
aq B

a
q

a

q
a

aq

( , , )

( ) ( )

,
π

π π1 1 1

1
1 1

1
1

2 1
2

2
⋅⋅ + − +⎛

⎝⎜
⎞
⎠⎟ −

⎡

⎣
⎢

⎤

⎦
⎥

1
1

1
1 1

1

aq q
q( ) .π

Determining the sign of this expression is easier than it might appear because
all the terms in the fraction are positive and only the term in square brackets needs
to be considered. For a � 1 it holds
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1
1

1
1 1

1
1

1
1 1

1
1 1

1 1

aq q q q

q

q q+ − +⎛
⎝⎜

⎞
⎠⎟ − ≥ + − +⎛

⎝⎜
⎞
⎠⎟ −

= +⎛
⎝⎜

⎞
⎠⎟

( ) ( )π π

−− −
⎛
⎝⎜

⎞
⎠⎟
> ∈( ) ( , ).1 0 0 1

1

π πq for

So for a � 1, L�(p, a, q) is always positive and the density thus zeromodal.
With a > 1, however, the term in square brackets can become negative for low

p and changes to positivity at the point �π , which refers to the mode

(18) �π = −
+

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

1
1

1
1

aq

q

q

.

Summarizing, the density associated with the Singh–Maddala LC is zero-
modal for a � 1 and unimodal for a > 1. This is a remarkable result: although the
LC depends on two shape parameters a and q, only one of them influences the
modality of the density. When conducting curve-fitting with the Singh–Maddala
LC, the researcher should thus pay attention to the value of a and make sure it is
in line with the modality of the underlying data.

Going back to Figures 1 and 2 from the motivating Section 1, we have the
example of the two similar looking Singh–Maddala LCs with (a = 0.9, q = 7) and
(a = 1.2, q = 2), both yielding the same Gini coefficient of 0.58.5 After the previous
analysis, it is directly clear that LC1, with a = 0.9 � 1, belongs to the zeromodal
density from Figure 2 and LC2, with a = 1.2 > 1, to the unimodal density.

4.2. Villaseñor and Arnold’s Triparametric Elliptical LC

The Elliptical LC proposed by Villaseñor and Arnold (1989) is known for
its good data fit and has been incorporated into the World Bank’s POVCAL
software. Its triparametric form is

(19) L a b d b e e( , , , ) ( ) ,π π απ βπ= − + − + +⎡⎣ ⎤⎦
1
2

2 2

where e = - (a + b + d + 1), a = b2 - 4a < 0 (so that the curve is an ellipse rather
than a parabola or hyperbola), and b = 2be - 4d. The four necessary and sufficient

5The Gini coefficient of the Singh–Maddala LC can be calculated with the formula given by

Sarabia (2008): Gini
q q

a

q
a

q
= −

−( )
−( )1

2
1

1
2

Γ Γ

Γ Γ

( )

( )
. Also note that according to (13), a third parameter b is

needed for the density in Figure 2. The choice of b = 12.35 for LC1 and b = 2.08 for LC2 ensures that
the median of both densities is equal to 1.
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conditions for (19) to be an LC are a = b2 - 4a < 0, a + b + d + 1 = - e > 0, d � 0,
and a + d - 1 � 0.6

In order to analyze the modality we consider the third derivative

(20) ′′′ =
− +

+ +
L a b d

e

e
( , , , )

( )( )

( )
.π

α β απ β

απ βπ

3
16

4 22 2

2 2 5

In this expression, the denominator is always positive and the factor
4ae2 - b2 is always negative. So the sign of L� is the opposite sign of
2ap + b = 2(b2 - 4a)p + 2be - 4d. An analysis of this term—the details of which are
in the Appendix—yields the result:

• A necessary and sufficient condition for the unimodality of the density is

(21)
− −
+ +

< < − + + + + +( ) −4 2
1

1
2

1
2

2
2a d

a d
b

a d a d
d

because then the third derivative is sign-changing and the mode occurs at

�π = −
−

2
42

d be
b a

.

• For b smaller than or equal to the lower boundary in (21), the density is
upward-sloping zeromodal (to be neglected in practice).

• For b greater than or equal to the upper boundary in (21), the density is
(downward-sloping) zeromodal.

So the three parameters a, b, and d together determine the modality of the
underlying density.

Figure 5 presents the LCs of five parameter combinations with different
modality and Gini coefficients.7 One can see that both uni- and zeromodal densi-
ties cover a vast range of inequality levels. This example underlines that from
looking only at the LCs and Gini coefficients, it is impossible to infer the density
modality. Compare for instance the unimodal LC1 (a = 2, b = -1.5, d = 1, Gini
coefficient 0.21) and the zeromodal LC2 (a = 5, b = -0.5, d = 3, Gini coefficient
0.23). Only the third derivative and the parameter condition (21) derived from it
can tell the researcher what the modality is.

4.3. Sarabia et al.’s First Hierarchical Family L1(p, a)

The third derivative of multiparametric LCs can become algebraically
involved. If, however, the LC belongs to a hierarchical family (as defined by
Sarabia et al., 1999, 2001), its third derivative can be expressed using the deriva-
tives of its uniparametric baseline function.

6Note that in Villaseñor and Arnold (1989) this condition is incorrectly stated as a + d - 1 � 0
(see Krause, 2013).

7The Gini coefficient can be calculated with the formula given by Villaseñor and Arnold (1989):

Gini
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Consider any uniparametric LC L0(p). Sarabia et al. (1999) show that the first
hierarchical family

(22) L L L1 0 01 0 1 0( , ) ( ) ( ) ( , ( ) )π α π π α α πα= ≥ ∨ ≤ < ′′′ ≥with

is also an LC. In this way uniparametric LCs can be extended to include another
parameter.

When analyzing the modality of the biparametric LC L1(p, a), one can write
its third derivative as

(23) ′′′ = − − + ′( ) + ′′ + ′′′L
L L L

1
0

3
0

2
01 2 3 3( , ) ( ) ( )

( ) ( ) ( )π α π α α α π
π

π
π

α π
π

α LL0 ( ) .π⎡
⎣⎢

⎤
⎦⎥

This expression only involves the derivatives of the baseline uniparametric LC
L0(p) and the parameter a, which facilitates the analysis for a given family.

A general analysis of the sign of ′′′L1 ( , )π α is only possible in a limited way,
though. One can see that ′′′ >L0 0( )π and a � 2 will lead to a positive ′′′L1 ( , )π α . So
any LC adapted from a baseline LC with a zeromodal density and family para-
meter a � 2 will have a zeromodal density modality itself, which is a remarkable
result. But this condition is only sufficient and not necessary: the first term in (23)
is negative if 0 < a < 2 but the whole expression might still be positive, depending
on the magnitudes of ′L0 ( )π , ′′L0 ( )π and ′′′L0 ( )π .
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LC1 (unimodal, Gini 0.21)
LC2 (zeromodal, Gini 0.23)
LC3 (zeromodal, Gini 0.39)
LC4 (unimodal, Gini 0.47)
LC5 (zeromodal, Gini 0.62)

Figure 5. Five Elliptical LCs with the Following Parameters: LC1: a = 2, b = -1.5, d = 1; LC2: a = 5,
b = -0.5, d = 3; LC3: a = 2, b = 1.5, d = 1; LC4: a = 1, b = -1, d = 0; LC5: a = 1, b = 1, d = 0
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In order to discuss (23) in more detail, let us apply it to one particular family,
namely the biparametric LC by Ortega et al. (1991), which is based on the uni-
parametric Pareto LC L0(p, k) = 1 - (1 - p)k:8

(24) L k kk
1 1 1 0 0 1( , , ) ( ( ) ) ( ; ).π α π π αα= − − ≥ < ≤with

Plugging the first three derivatives of the Pareto LC L0(p, k) = 1 - (1 - p)k

(25) ′ = − ≥−L k k k
0

11 0( , ) ( ) , ,π π

(26) ′′ = − − − ≥−L k k k k
0

21 1 0( , ) ( )( ) ,π π and

(27) ′′′ = − − − ≥−L k k k k k
0

31 2 1 0( , ) ( )( )( )π π

into (23) gives the third derivative of the Ortega LC as

(28) ′′′ = − − − − + −
−

− − −L k kk k
1

3 2 11 2 1 1 3 1
3

( , , ) [ ( )[( ) ( ( ) ) ( ) ]π α π α α α π π π πα

ααπ π π− − −− − + − − −1 2 31 1 1 2 1k k k k kk k( )( ) ( )( )( ) ].

The sign and thus the density modality of ′′′L k1 ( , , )π α depend on both a and
k. The main result is that for 0 < k < 1, a family parameter 0 < a < 1 leads to a
unimodal density and a > 1 to a zeromodal one. If a and k take the boundary
values 0 or 1, special cases may arise as shown in Table 2.

4.4. Sarabia et al.’s Second Hierarchical Family L2(p, g)

The second hierarchical family of LCs described in Sarabia et al. (1999)

(29) L L2 0 1( , ) ( ( ))π γ π γγ= ≥with

8The Pareto parameter is here called k and not a as in the previous section (Table 1), in order to
avoid confusion with the family parameter a. Also note that a � 0 combines the parameter spaces
0 � a < 1 ⁄ a � 1 from (22) because the Pareto LC satisfies ′′′ ≥L0 0( )π .

TABLE 2

Density Modality for Different Combinations of the Pareto Baseline Parameter K and,
Respectively the First Family Parameter a (Ortega LC, see (24)) or Second Family

Parameter g (Rasche LC, see (31))

Family Parameter a
(Family Parameter g) 0 < k < 1 k = 1

a = 0 (g = 1) zeromodal egalitarian (all incomes = m)
0 < a < 1 (1 < g < 2) unimodal zeromodal upward-sloping
a = 1 (g = 2) zeromodal constant uniform density
a > 1 (g > 2) zeromodal zeromodal
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shows a different way of extending a baseline uniparametric LC L0(p) in a
multiparametric way. Like in the case of the first family, the third derivative of
L2(p, g) can be written using only the derivatives of L0(p):

(30) ′′′ = − − ′ + ′ ′−L L
L
L

L
2 0

1 0
3

0
2

01 2 3( , ) ( ( )) ( ) ( )
( ( ))
( ( ))

( )π γ γ π γ γ π
π

πγ ′′⎛
⎝⎜

⎞
⎠⎟
+ ′′′⎡

⎣⎢
⎤
⎦⎥

L
L

L0

0
0

( )
( )

( ) .
π

π
π

Note the similarity to (23): ′′′L0 ( )π and g � 2 are sufficient but not necessary
conditions for zeromodality of L2(p, g).

Let us consider an example of the second hierarchical family, again using the
Pareto LC as the baseline function. The biparametric LC

(31) L k kk
2 1 1 0 1 1( , , ) ( ( ) ) ( ; )π γ π γγ= − − < ≤ ≥with

was proposed by Rasche et al. (1980). Using the derivatives of the Pareto LC from
(25), (26), and (27), (30) becomes

(32) ′′′ = − − −

⋅ − − −

− −L k k
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k k
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One can show that for 0 < k < 1 and 1 < g < 2, this expression is sign-changing
and the density unimodal, whereas 0 < k < 1 and g � 2 lead to a zeromodal
density. Other parameter combinations, involving boundary cases, are displayed
in Table 2. The correspondence of the parameters a and g of the first and second
family is worth noticing. Together, these cases illustrate how the modality of
multiparametric LCs can be influenced by the modality of their baseline functions
and the choice of the family parameters.

5. Monte Carlo Simulation

The two previous sections have analyzed the density modalities of many
important LCs and shown some examples of similar looking LCs with differently-
shaped densities. But how important is this result in practice? If a researcher
chooses an LC to fit their data in an error-minimizing way, won’t the LC have the
correct density modality? The answer is clearly no, as the following Monte Carlo
simulation shows.

The simulation is done with the five uniparametric LCs from Section 3;
repeating it with multiparametric LCs does not add further insight. As goodness of
fit criteria for the LCs, the Mean Squared Error (MSE) and the Gini difference are
used. While the MSE indicates how well the parametric LC fits the given data
points, the Gini difference (see Chotikapanich, 1993) captures the overall fit of the
shape of the LC. It exploits the following relation between an LC and its implied
Gini coefficient:

(33) Gini L d= − ∫1 2
0

1
( ) .π π
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The Gini difference is then obtained as the absolute difference between the
Gini implied by (33) and the actual one (given by the data). The Gini coefficients
associated with the five LCs are given in the last column of Table 1.9

The MC Simulation is carried out as follows:
1. Take 10,000 draws from a zeromodal or unimodal income density with

mean 1.
2. Aggregate the drawn income data to decile data points (to mimic grouped

data as available in many applications).
3. For each of the five LCs, solve for the parameter which best fits the decile

data points by minimizing the MSE.10 This procedure is carried out using
the fminunc-routine in MATLAB.

4. Calculate and store the MSEs and the Gini differences for each of the five
LCs.

5. Repeat Steps 1 to 4 10,000 times.
6. Look which of the five parametric forms has the lowest MSE and/or Gini

difference overall: does the density implied by this LC have the correct
shape, that is, does it look similar to the actual one?

The results for a selection of underlying densities and inequality levels are
shown in Table 3; more detailed results are available from the author upon
request. Of course, fitting an LC of the same parametrization as the underlying
density always leads to the lowest MSE and Gini difference (in italics), but the
focus lies on which of the other LC forms does best (in bold).

For instance, for an underlying Weibull density (quite egalitarian with b = 3),
a fitted Chotikapanich LC leads to the lowest MSE at the decile data points. If,
based on this criterion, the researcher chose the Chotikapanich LC, the implied
density would be zeromodal and very different from the true Weibull density.
Figures 6 and 7 show the LCs and densities for this case: the very similar looking
LCs give rise to considerably varying income densities. A researcher aware of the
unimodality of his data should rather decide on the Lognormal LC, which, despite
its slightly higher MSE at the decile points, captures the unimodal shape of the
Weibull income density. A diverging shape might lead to incorrect conclusions
about the distribution of income, because the downward-sloping Chotikapanich
density misses out on the dominance of the middle class and implies a larger
number of poor earners. Incidentally, the Gini difference as goodness of fit crite-
rion would (appropriately) point toward the Lognormal LC in this setting.11

9These formulas can be found, respectively, in Arnold (1983) (for the Pareto LC), Rohde (2009),
Chotikapanich (1993) (this paper uses a simplified expression of her formula), and McDonald (1984)
(with the Weibull and Lognormal distributions as special cases of the Generalized Beta).

10As a referee has pointed out, the LC least squares estimator is consistent but there is a lot of
research going on about more efficient estimators, given heteroscedastic and autocorrelated residuals.
Kakwani and Podder (1973) were among the first to suggest an alternative procedure. An exploratory
analysis shows that in the given application the results would hardly change.

11Table 3 also gives two measures of distance from the implied density g(x) to the true one f(x) in
order to underline the importance of the correct modality: the Kullback–Leibler Distance (see Kullback

and Leibler, 1951) f x log
f x
g x

dx( )
( )
( )

⎛
⎝⎜

⎞
⎠⎟−∞

∞

∫ and the intuitive Integral Difference f x g x dx( ) ( )−
−∞

∞

∫ . In the

case with the underlying Weibull density discussed, the two measures support our analysis by confirm-
ing that the unimodal Lognormal density has the smallest distance from the true unimodal Weibull.
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TABLE 3

MC Simulation for Different Underlying Densities

Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull
Density Modality zero zero zero uni zero/uni

Parameter a > 1 b > 1 k > 0 b > 0 s > 0

Underlying WEIBULL with b = 3 (unimodal, Gini 0.2063)
Est. mean parameter 3.0976 2.2010 1.2372 0.3653 3.0007
(S.D.) (0.0187) (0.0120) (0.0096) (0.0027) (0.0249)
MSE 0.000995 0.000142 0.000073 0.000110 0.000000
(S.D.) (0.000024) (0.000007) (0.000004) (0.000007) (0.000000)
Gini difference 0.013807 0.006809 0.005177 0.002543 0.001218
(S.D.) (0.001389) (0.001455) (0.001485) (0.001375) (0.000918)
K-L distance 7.5213 4.5157 4.0850 0.3215 0.0002
Integral diff. 0.8367 0.4829 0.4249 0.2510 0.0002

Underlying LOGNORMAL with s = 0.8 (unimodal, Gini 0.4284)
Est. mean parameter 1.7162 1.3574 2.8746 0.8000 1.2180
(S.D.) (0.0103) (0.0059) (0.0300) (0.0072) (0.0134)
MSE 0.001532 0.000098 0.000449 0.000001 0.000337
(S.D.) (0.000048) (0.000007) (0.000036) (0.000001) (0.000027)
Gini difference 0.017261 0.008374 0.004837 0.002781 0.005762
(S.D.) (0.003466) (0.003387) (0.003005) (0.002094) 0.003255
K-L distance 9.1313 4.4648 2.6921 0.0001 0.2440
Integral diff. 0.7534 0.4185 0.4078 0.0001 0.2632

Underlying CHOTIKAPANICH with k = 1.5 (zeromodal, Gini 0.2411)
Est. mean parameter 2.6629 1.9289 1.4997 0.4393 2.4466
(S.D.) (0.0100) (0.0063) 0.0076 (0.0021) 0.0132
MSE 0.001058 0.000039 0.000000 0.000085 0.000084
(S.D.) (0.000024) (0.000005) (0.000000) (0.000006) 0.000005
Gini difference 0.009927 0.001834 0.000905 0.002820 0.005621
(S.D.) (0.001073) (0.001028) (0.000682) (0.001120) (0.001154)
K-L distance 9.5512 2.8658 0.0078 0.3666 0.3795
Integral diff. 0.8664 0.2753 0.0004 0.3645 0.4133

Underlying ROHDE with b = 1.1 (zeromodal, Gini 0.6725)
Est. mean parameter 1.2428 1.1000 6.4609 1.4276 0.5814
(S.D.) (0.0036) (0.0017) (0.0729) (0.0091) 0.0049
MSE 0.001730 0.000001 0.001475 0.000084 0.000503
(S.D.) (0.000080) (0.000001) (0.000071) (0.000005) (0.000034)
Gini difference 0.002646 0.002377 0.021085 0.014771 0.024003
(S.D.) (0.002013) (0.001815) (0.003267) (0.003077) (0.003052)
K-L distance 13.4991 0.0008 1.6146 0.4092 0.5860
Integral diff. 0.9072 0.0002 0.8571 0.4850 0.7034

Underlying PARETO with a = 2.5 (zeromodal, Gini 0.2500)
Est. mean parameter 2.5015 1.8778 1.5277 0.4574 2.3918
(S.D.) (0.0439) (0.0284) (0.0357) (0.0105) (0.0607)
MSE 0.000000 0.000790 0.001175 0.000692 0.001500
(S.D.) (0.000001) (0.000065) (0.000097) (0.000057) (0.000100)
Gini difference 0.004301 0.004429 0.005958 0.005108 0.004448
(S.D.) (0.003536) (0.003492) (0.003942) (0.004284) 0.003799
K-L distance 0.0402 1.9287 2.3998 0.6723 1.1494
Integral diff. 0.0021 0.7803 0.8790 0.6811 0.8566

Note: Printed in italics are the results for the LC form associated with the underlying density;
printed in bold are the results for the best-performing LC apart from this one.
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Pareto Lorenz Curve (α = 3.0976)
Rohde Lorenz Curve (β = 2.2010)
Chotikapanich Lorenz Curve (k = 1.2372)
Lognormal Lorenz Curve (σ = 0.3653)
(True) Weibull Lorenz Curve (b=3)

Figure 6. Parametric LCs Fitting Decile Data from a Simulated Underlying Weibull Density
(b = 3, Gini = 0.2063)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Normalized income (μ=1)

D
en

si
ty

 f

 

 

Pareto Density (α = 3.0976)
Rohde Density (β = 2.2010)
Chotikapanich Density (k = 1.2372)
Lognormal Density (σ = 0.3653)
(True) Weibull Density (b=3)

Figure 7. Normalized Densities Associated with the LCs from Figure 6
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However, in general one cannot count on the Gini difference reliably leading to the
LC with the correct modality, as Table 3 shows.

One setting from Table 3 deserves particular attention: when the true density
is a very inegalitarian zeromdodal of the Rohde form (b = 1.1), MSE and Gini
difference are lowest for the Lognormal LC, the only one to imply a unimodal
density. Surprisingly, the density difference measures are in accordance with this
choice and suggest that the unimodal Lognormal density comes nearer to the true
one than the zeromodal densities.

The reason lies at the very high inequality level: Figure 8 shows that the mode
of the Lognormal density is near zero which makes it effectively downward-sloping
on most of the domain.12

One can conclude that the relevance of choosing an LC with the correctly
implied modality diminishes in extremely inegalitarian settings. This case, with
a Gini coefficient of 0.6725, is however of limited practical importance. For

12In a Lognormal density with mean 1, the mode is located at �x e e= =− −μ σ σ2
23

2 . Using the Lognor-

mal Gini coefficient 2
2

1Φ σ( ) − , one can express the location of the mode as a direct function of

the Gini coefficient:

(34) �x e
Gini

=
− +( )⎡
⎣⎢

⎤
⎦⎥

−3
1

2
1

2
Φ

.

For a Gini of 0.5, the mode is at 0.2554, while in the above case of a Gini at 0.6725, the mode is

at very low 0.0563—keeping in mind that mean income is still 1.
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Figure 8. Normalized Densities Associated with LCs Resulting from Rohde Density with b = 1.1
(Gini = 0.6725)
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egalitarian and moderately inegalitarian income distributions, the researcher
should definitely take the modality into account upfront because goodness of fit
criteria like MSE and Gini difference can lead to an LC with an incorrect density
shape.

6. An Empirical Analysis

In this final section an exploratory empirical study is undertaken to illustrate
the relation between LCs from different countries and their density modality.
The data source is United Nations University–World Institute for Development
Economics Research (2008) because of its wide coverage, including decile data
from many countries and time periods. From this database, 1,628 LC decile data
rows refer to income (rather than consumption or expenditure) and have a quality
rating of 1, 2, or 3 (excluding memorandum items and those from particularly
unreliable old sources).13 The decile data on LCs in the database are accompanied
by a reported Gini coefficient, which has either been reported directly by the
countries or calculated by the World Bank with the POVCAL software. The
reported Gini coefficients range from below 0.2 (e.g., in Finland in the 1980s and
1990s) to above 0.7 from Mali, Mauritania, Zambia, and Zimbabwe in the 1980s
and 1990s.

One should keep in mind that direct cross-country comparisons are beset by
some caveats, for instance the slightly varying income definitions across countries
and data quality ratings. But for our goal of analyzing LC performance and its
implications for income density modality in a variety of settings and inequality
levels, the 1,628 LCs from 120 different countries offer a good opportunity.

Table 4 shows some aggregate statistics on the 120 countries, dividing them
into five regional groups: Europe (West), Europe (East, referring to the formerly
centrally-planned economies), Africa, the Americas (including the Caribbean),
and Asia (which also comprises the Middle East and Pacific countries). According
to the mean reported Gini coefficients, inequality in formerly Socialist Europe is
slightly lower than in Western Europe but its inter-country dispersion is larger.

13It is known that consumption is typically more equally distributed than income. Note that wealth
would be even more unequally distributed than income (see, e.g., Castañeda et al., 2003). Excluding all
data other than income is a basis for ensuring at least a broad comparability across countries.

TABLE 4

Descriptive Overview of the Dataset

Region
Europe
(West)

Europe
(East) Africa Asia

The
Americas

# Countries 18 24 25 25 28
# Observations 481 261 53 284 549
Mean reported Gini coeff. (S.D.) 0.3117

(0.0563)
0.2921

(0.0726)
0.5647

(0.1118)
0.3862

(0.0836)
0.5040

(0.0702)
# Weibull-implied unimodals 479 257 10 242 213
# Weibull-implied zeromodals 2 4 43 42 336
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Income distributions in Asia are more egalitarian than in the Americas, while
Africa is the continent with the highest mean Gini coefficient and the highest
inter-country dispersion.

Now what is the density modality of the 1,628 settings? Ideally, researchers
should obtain additional data in order to infer the modality. This paper solely
relies on the decile data given and instead exploits the flexibility of the Weibull LC
discussed in Section 3: it uses the modality implied by the Weibull LC as a proxy
for the true one. A Weibull LC is fitted to the data and, when its fitted parameter
b is larger than 1, one can conclude that the density is unimodal, otherwise it is
assumed to be zeromodal. This Weibull-implied modality is also given in Table 4:
according to this proxy, income is predominantly unimodal in Europe and Asia,
mostly zeromodal in Africa, and sometimes unimodal, sometimes zeromodal on
the American continent. This observation is in line with the consensus in the
literature (see Dagum, 1999; Kleiber, 2008) that income distributions in poorer,
overpopulated countries tend to be zeromodal and those in more developed coun-
tries unimodal. In terms of the Gini coefficient, here we see that countries with high
Gini coefficients (in particular higher than 0.45–0.48) tend to have Weibull-implied
zeromodality, those with low Gini coefficients implied unimodality.

The question is now if the Weibull-implied modality coincides with the
density modality implied by the best-fitting LC. Given the decile data, it does not
make sense to fit LCs with more than one parameter, so let us restrict the selection
to the five uniparametric LCs from Section 3: Pareto, Rohde, Chotikapanich,
Lognormal, and Weibull. Each of the 1,628 LCs is estimated separately: for each
of the five parametric forms, the parameter which best fits the decile data points by
minimizing the MSE is calculated. MSE and Gini difference are then calculated
accordingly, using the reported Gini coefficient as a proxy for the actual one.

Detailed results for every LC and every country can be obtained from the
author upon request, but the main points become clear from Tables 5 and 6. In
Table 5, the best-fitting LCs are shown for the worldwide sample of Weibull-
implied zeromodal and unimodal settings: with the MSE as criterion, the Lognor-
mal LC outperforms across both the unimodal and zeromodal settings, thereby
erroneously suggesting a unimodal density shape in the latter case. In fact, for 408
out of the 427 zeromodals, the Lognormal LC has the lowest MSE. When restrict-
ing the choice to the LCs which imply the correct zeromodality, Rohde’s form
obtains the lowest MSE for 398 of them. The Gini difference as a criterion leads to
a wider range of outperformers: among the unimodals, the Weibull LC achieves
the best fit in more settings than the Lognormal LC. But the Gini difference cannot
guarantee the right density modality either: consider the more than 50 LCs of each
of the Pareto, Rohde, and Chotikapanich forms it proposes in the unimodal
setting. Among the zeromodals, each of the five forms has the lowest Gini differ-
ence in many settings and the inappropriate Lognormal LC does not dominate as
starkly.

Further insights can be gained from Table 6, where the results are broken
down by region.14 In (unimodal) Western and Eastern European countries the

14In Europe (West) and Europe (East) only the results for the unimodals are reported, because they
make up, respectively, 479 out of 481 and 257 out of 261 LCs.
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Lognormal LC obtains the best fit in terms of MSE and the Weibull in terms of the
Gini difference. What is striking about the African estimation is that even among
the unimodal settings, the Pareto LC achieves the lowest Gini difference. Only
when the unimodality restriction is imposed, does the Lognormal LC outperform.
It is also noteworthy that the Weibull LC does poorly in the African sample, in
both the zeromodal and unimodal groups: it has the third-highest MSE and the
highest Gini difference of all five forms. And it does not fare much better in Asia
and in the Americas. In Asia, unimodal settings are best captured by the Lognor-
mal LC, while the Pareto and Rohde forms do well for the zeromodal observa-
tions. In the Americas, MSE and Gini difference point to the Lognormal LC for
both groups; after considering modality, Rohde’s and Chotikapanich’s forms
outperform the others in the zeromodal settings. So outside Europe, the Weibull
LC tends to do worse than the other forms. Obviously, its flexibility to encompass
unimodal and zeromodal densities—and its ability to give a hint at the underlying
modality—comes at a cost. In many circumstances the other, more specialized,
forms obtain a better fit in terms of MSE or Gini difference.

It is noteworthy that the goodness of fit criteria MSE and Gini difference
often point to different LCs. In fact, for only 554 out of 1,628 LCs the same

TABLE 5

Results from Fitting LCs from the Worldwide Sample to Five Parametric Forms (settings
with Weibull-implied uni- and zeromodality)

Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

WEIBULL-IMPLIED UNIMODALS (1201 LCs, Mean Gini 0.3387)
Est. min. parameter 1.5426 1.2601 0.8672 0.2612 1.0002
Est. mean parameter 2.1319 1.6152 2.1815 0.6222 1.7810
Est. max. parameter 3.9807 2.8444 3.4764 0.9417 4.4134
MSE 0.001034 0.000180 0.000417 0.000073 0.000372
(S.D.) (0.000610) (0.000202) (0.000462) (0.000176) (0.000386)
MSE/Lowest MSE 14.1644 2.4658 5.7123 1.0000 5.0959
Gini difference 0.015550 0.010238 0.009169 0.006672 0.007345
(S.D.) (0.009513) (0.008969) (0.009237) (0.009631) (0.010148)
Gini diff./lowest Gini diff. 2.3306 1.5345 1.3743 1.0000 1.1009
# Lowest MSE 28 4 5 1067 97
# Lowest MSE (uni-mod) – – – 1100 101
# Lowest Gini diff. 127 61 77 365 571
# Lowest Gini diff. (uni-mod) – – – 629 572

WEIBULL-IMPLIED ZEROMODALS (427 LCs, Mean Gini 0.5520)
Est. min. parameter 1.1459 1.0556 3.4624 0.9394 0.4463
Est. mean parameter 1.4306 1.1969 4.2871 1.0917 0.8388
Est. max. parameter 1.5534 1.2631 9.5550 1.7400 0.9994
MSE 0.001455 0.000260 0.001493 0.000118 0.000785
(S.D.) (0.000571) (0.000253) (0.000694) (0.000240) (0.000515)
MSE/Lowest MSE 12.3305 2.2034 12.6525 1.0000 6.6525
Gini difference 0.016602 0.012412 0.010441 0.010037 0.015237
(S.D.) (0.010941) (0.011227) (0.013997) (0.014272) (0.015081)
Gini diff./lowest Gini diff. 1.6541 1.2366 1.0403 1.0000 1.5181
# Lowest MSE 12 3 0 408 4
# Lowest MSE (zero-mod) 17 398 0 – 12
# Lowest Gini diff. 73 57 87 154 56
# Lowest Gini diff.

(zero-mod)
74 57 217 – 79
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parametric form achieves both the lowest MSE and Gini difference. This is evi-
dence that these two measures capture different aspects of the goodness of fit of an
LC: a parametric LC may obtain a low MSE at the given data points; its overall
form, however, may not be in line with the reported Gini coefficient. So both
criteria have their virtues. However, neither unambiguously chooses LCs with
the correct density modality, thus the researcher should restrict the choice of
LCs upfront.

TABLE 6

Results from Fitting LCs from Different Regions to Five Parametric Forms (settings with
Weibull-implied uni- and zeromodality)

Parametric LC Pareto Rohde Chotikapanich Lognormal Weibull

UNIMODAL EUROPE (WEST) (479 out of 481 LCs, mean reported Gini 0.3109)
MSE 0.001034 0.000152 0.000251 0.000054 0.000247
(S.D.) (0.000614) (0.000136) (0.000249) (0.000107) (0.000215)
Gini difference 0.015578 0.009506 0.008211 0.004645 0.004128
(S.D.) (0.006301) (0.005427) (0.005124) (0.005543) (0.005659)

UNIMODAL EUROPE (EAST) (257 out of 261 LCs, mean reported Gini 0.2882))
MSE 0.000771 0.000145 0.000269 0.000051 0.000284
(S.D.) (0.000558) (0.000130) (0.000260) (0.000105) (0.000209)
Gini difference 0.018299 0.013849 0.013511 0.009788 0.009144
(S.D.) (0.013201) (0.013177) (0.013554) (0.013397) (0.013579)

UNIMODAL AFRICA (10 out of 53 LCs, mean reported Gini 0.4142))
MSE 0.001017 0.000329 0.001091 0.000162 0.000846
(S.D.) (0.000475) (0.000148) (0.000498) (0.000136) (0.000448)
Gini difference 0.016574 0.020897 0.022684 0.028610 0.033753
(S.D.) (0.027227) (0.029384) (0.030704) (0.030209) (0.030922)

ZEROMODAL AFRICA (43 out of 53 LCs, mean reported Gini 0.5997))
MSE 0.001340 0.000292 0.001861 0.000179 0.000869
(S.D.) (0.000541) (0.000457) (0.000998) (0.000432) (0.000827)
Gini difference 0.027235 0.027647 0.031804 0.031391 0.035979
(S.D.) (0.020746) (0.020721) (0.025877) (0.025259) (0.027548)

UNIMODAL ASIA (242 out of 284 LCs, mean reported Gini 0.3628))
MSE 0.001005 0.000225 0.000583 0.000109 0.000533
(S.D.) (0.000611) (0.000176) (0.000463) (0.000151) (0.000399)
Gini difference 0.013105 0.008290 0.007480 0.006572 0.008477
(S.D.) (0.008409) (0.007327) (0.007190) (0.008260) (0.008866)

ZEROMODAL ASIA (42 out of 284 LCs, mean reported Gini 0.5208))
MSE 0.001499 0.000328 0.001395 0.000174 0.000832
(S.D.) (0.000915) (0.000349) (0.000793) (0.000309) (0.000624)
Gini difference 0.015077 0.013929 0.015378 0.015582 0.020701
(S.D.) (0.012817) (0.012605) (0.013749) (0.015226) (0.016278)

UNIMODAL THE AMERICAS (213 out of 549 LCs, mean reported Gini 0.4313))
MSE 0.001384 0.000228 0.000748 0.000098 0.000554
(S.D.) (0.000487) (0.000350) (0.000694) (0.000327) (0.000616)
Gini difference 0.014899 0.009238 0.007366 0.006553 0.009884
(S.D.) (0.008793) (0.007342) (0.007941) (0.008887) (0.009485)

ZEROMODAL THE AMERICAS (336 out of 549 LCs, mean reported Gini 0.5501))
MSE 0.001463 0.000245 0.001459 0.000102 0.000768
(S.D.) (0.000513) (0.000193) (0.000616) (0.000189) (0.000441)
Gini difference 0.015441 0.010322 0.007105 0.006654 0.011989
(S.D.) (0.007768) (0.007146) (0.008286) (0.008733) (0.009530)
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7. Conclusion

This paper has derived a relation between the LC and the modality of its
density function: the third derivative of a parametric LC gives an indication of how
the underlying density looks without having to derive it. The density modalities of
several important uniparametric and multiparametric LCs are discussed.

Even LCs whose graphs appear similar and are associated with the same
Gini coefficient can have very different density modalities. Both the Monte Carlo
simulation and the empirical analysis show that LC fitting based on MSE or Gini
difference can lead to an LC whose density has an incorrect modality. The result-
ing implications about the relative numbers of rich, middle-class and poor earners
can thus be highly misleading. This paper therefore argues that researchers should
limit their choice of LCs to those forms associated with the appropriate density
modality (e.g., by checking the third derivative of the LC). In case the shape of
the income density is unknown, more information should be gathered, or the para-
meter estimate of the Weibull LC can give a hint. Indeed, from our empirical
analysis one may conclude that one main asset of the Weibull LC is indicating the
modality, while other LCs often achieve a better fit in most unimodal or zeromodal
settings.
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