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There are three reasons why estimation of parametric income distributions may be useful when
empirical data and estimators are available: to stabilize estimation; to gain insight into the relationships
between the characteristics of the theoretical distribution and a set of indicators, e.g. by sensitivity
plots; and to deduce the whole distribution from known empirical indicators, when the raw data are not
available. The European Union Statistics on Income and Living Conditions (EU-SILC) survey is used
to address these issues. In order to model the income distribution, we consider the generalized beta
distribution of the second kind (GB2). A pseudo-likelihood approach for fitting the distribution is
considered, which takes into account the design features of the EU-SILC survey. An ad-hoc procedure
for robustification of the sampling weights, which improves estimation, is presented. This method is
compared to a non-linear fit from the indicators. Variance estimation within a complex survey setting
of the maximum pseudo-likelihood estimates is done by linearization (a sandwich variance estimator),
and a simplified formula for the sandwich variance, which accounts for clustering, is given. Perfor-
mance of the fit and estimated indicators is evaluated graphically and numerically.
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1. Introduction

In December 2001, the European Council meeting took place in Laeken,
Belgium. EU Heads of State and Government agreed on common objectives in the
area of social inclusion, pensions, health, and long-term care. In order to compare
practices in different countries and measure progress toward these common objec-
tives, a set of common indicators was needed. These common indicators consist
of an overall list of 14 indicators (Eurostat, 2009). The set of indicators called
“Laeken indicators” was lately renamed to indicators of poverty and social exclu-
sion. Our focus is placed, in particular, on the estimation of the at-risk-of-poverty
rate (ARPR), the relative median poverty gap (RMPG), the quintile share ratio
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(QSR), and the Gini index, as well as the median. Nevertheless, our results could
be applied to other areas of indicator estimation as well.

Parametric income distributions have long been used for modeling income
(see, e.g., Kleiber and Kotz, 2003; Chotikapanich, 2008). Modeling of both the
whole income range or the tails of the distribution have been investigated in the
literature. Here we concentrate on modeling the entire distribution. The advantage
of parametric estimation of income distributions is that there are explicit formulas
for poverty and inequality measures as functions of the parameters of the theo-
retical income distribution. The functional relationship between the indicators and
the parameters under the assumed distribution gives insight into both: sensitivity
of indicators to variations of shape can be assessed on the one hand, and on the
other hand interpretation of shape parameters is deepened by the relationship to
the indicators. Inequality measures are tightly linked to modeling income distri-
butions (see, e.g., Cowell, 1995; Cowell and Flachaire, 2007).

The generalized beta distribution of the second kind (GB2), which is a four-
parameter distribution, is acknowledged to give an excellent description of income
distributions (see, e.g., McDonald, 1984; McDonald and Xu, 1995; Bordley et al.,
1996; McDonald and Ransom, 2008; Sepanski and Kong, 2008). Amongst its special
cases are Fisk (or log-logistic), Dagum, and Singh–Maddala distributions. Interesting
limiting cases also include the lognormal and the Generalized Gamma distribu-
tions. Empirical studies on income (see, e.g., Kleiber and Kotz, 2003, table B2;
Dastrup et al., 2007; Jenkins, 2009) tend to show that the GB2 outperforms other
four-parameter distributions for modeling income. Moreover, generalizations to
five-parameter distributions do not seem to improve the fit in general. Therefore the
GB2 is sufficiently acceptable for a wide range of empirical distributions.

The main emphasis of this paper is to investigate different methods for fitting
the GB2 model to the income distribution and to study income inequality at the
country level in the context of the EU-SILC survey. The EU-SILC survey was
developed in order to collect comparable cross-sectional and longitudinal micro-
data on income, poverty, social exclusion and, living conditions across participat-
ing EU countries. We fit the GB2 distribution to the income variable and compute
the indicators from the parameters of the fitted distribution. We use the pseudo-
loglikelihood: the population loglikelihood is approximated by the extrapolated
sum of the scores. Once the parameter estimates have been obtained, the maximum
pseudo-likelihood (PML) estimates of the indicators are obtained by plugging the
parameter estimates into the functional expression for the indicators. We provide
the design-based variance estimators of the GB2 parameters and of the derived
indicators by linearization.

When measuring inequality, we are often confronted with extreme values (see,
e.g., Cowell and Victoria-Feser, 1996; Cowell and Flachaire, 2007). In general,
GB2 estimation and other maximum likelihood estimation from parametric dis-
tributions have robustness problems and are sensitive to extreme values and their
specification (see, e.g., Victoria-Feser and Ronchetti, 1994; Victoria-Feser, 2000).
Actions have been taken by the SILC data producers in order to limit the influence
of very large incomes in the databases (Osier et al., 2006). These consist in recoding
of extreme weights to more acceptable values, but possibly less attention has been
given to the left tail of the income distribution. In contrast to direct poverty
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estimates, parametric estimation is influenced by the whole left tail behavior of the
income distribution. Small deviations to the GB2 hypothesis in the left tail
result in biased indicators under the GB2. In our simulation study (Graf and
Nedyalkova, 2011b), we have noticed that a certain bias in the estimates is
induced. This led us to the idea of robustifying the sampling weights by creating an
ad-hoc procedure for adjusting the sampling weights.

Suppose we do not have the income microdata at our disposal, but the
indicators, fitted on empirical data, are publicly available (this is the situation
of an external user of the Eurostat website). The indicators have been produced
without any reference to a theoretical income distribution. It is then possible to go
the other way round, that is to reconstruct the whole income distribution, knowing
only the values of the empirical indicators and assuming that the theoretical
distribution models the empirical distribution to an acceptable level of precision.
This approach has been applied to EU-SILC data with success. This means that
the set of indicators contains enough information to permit the reconstruction of
the empirical distribution generally to an acceptable level of precision.

The article is structured as follows. In Section 2, the basic properties of the
GB2 are briefly recalled and formulas for the above-mentioned indicators under
the GB2 model are given. Section 3 focuses on fitting the GB2 by PML estimation,
using the whole microdata information. In Section 3, a sandwich estimator of the
variance of the PML estimates of the GB2 parameters is given. Section 4 presents
an ad-hoc procedure for robustification of the sampling weights. In Section 5, a
new method for fitting the parameters of the GB2, using only the set of empirical
indicators, is presented. In Section 6, graphical and numerical results on com-
parison of the two methods of estimation are given. Finally, Section 7 gives some
concluding remarks.

2. Indicators of Poverty and Social Exclusion in the EU-SILC
Framework Under the GB2 Model

2.1. The GB2 Model

The GB2 is a four-parameter distribution and is denoted GB2(a, b, p, q). The
GB2 can be obtained by a transformation of a standard beta random variable.
Apart from the scale parameter b > 0, this distribution has three positive shape
parameters a, p, and q. The parameter a represents the overall shape, p governs the
left tail, and q the right tale. The GB2 density takes the form:

(1) f x
a

bB p q
x b

x b
x

ap

a p q;
,

,θ( ) =
( )

( )

+ ( )( )
≥

−

+

1

1
0

where B(p, q) is the beta function, q = (a, b, p, q)T is the vector of parameters, and
T stands for transposition.

The cumulative distribution function of a GB2 variable can be written as
F(x; q). It does not have an explicit form, but is easily obtainable in any statistical
software, e.g. R package GB2 (R Development Core Team, 2008; Graf and
Nedyalkova, 2011a). The derivation of moments and likelihood equations also
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necessitates the use of special mathematical functions, like the beta and gamma
function and their derivatives. Note that there is a relationship between the beta
(B) and gamma (G) functions:

B x y
x y
x y

, ,( ) =
( ) ( )

+( )
Γ Γ
Γ

where G(x) = (x - 1)!, x > 0.
Let X be a random variable following a GB2 distribution. Then the moment

of order k is defined by

(2) E X b
p k a q k a

p q
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Γ Γ

.

Moments exist for -ap < k < aq.
The incomplete moment of order k (Butler and McDonald, 1989) is given by
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Thus it can be expressed with the help of a GB2 cumulative distribution function
with special parameters.

The log density of the GB2 distribution is given by:

log log log log log logf a b p q p q
ap

( ) = ( ) − ( ) − ( )( ) − ( )( ) + +( )( )
+ −(

Γ Γ Γ
1)) ( ) − +( ) + ( )( )log log .x b p q x b a1

2.2. The Set of Indicators

There are simple and explicit formulas for the inequality measures as func-
tions of the parameters of the income distribution. McDonald (1984) gave the
analytic form of the Gini index under the GB2 distribution, but the GB2 expres-
sions for the other indicators are new and easily obtained through the cumula-
tive distribution function, or the quantile function, or using the moments of the
distribution.

The equivalized income is the main income variable in the EU-SILC survey
and is equal to the total gross household income over the household equivalized
size, where the household equivalized size is a weighted sum of the number of
adults and children in the household. There is the particularity that the house-
hold’s equivalized income equals the equivalized income of each member of the
household. Another property of the survey is that all household members have the
same sampling weight (Eurostat, 2009).

Here, we recall the definition of the ARPR, RMPG, QSR, and the Gini index
and give their derived expressions (as functions of the parameters of the distribu-
tion) under the GB2 hypothesis. These inequality and poverty measures fulfill the
well-known property of scale invariance (see, e.g., Atkinson and Bourguignon,
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2000) and can be computed with a GB2 distribution for which the scale parameter
b can be chosen arbitrarily, e.g. b = 1. Let F denote the cumulative distribution
function of the equivalized income X and in particular the GB2 cumulative distri-
bution function.

1. At-risk-of-poverty rate (ARPR)
Let m = x50 = F -1(0.5) denote the median income, then 0.6m is called the
at-risk-of-poverty threshold (ARPT) or “poverty line.” The ARPR is the
proportion of the population under the poverty line. Then, under the GB2
distribution,

ARPR a p q X m F m a p q, , Pr . . ; , , , .( ) = <( ) = ( )0 6 0 6 1

2. Relative median poverty gap (RMPG)
Let mp = F -1(ARPR/2) denote the median income of the poor (those under
the poverty line). Then, RMPG is the relative gap between the poverty line
and the median income of the poor and is defined as one minus the ratio
between the median income of the poor to 60 percent of the median income
of the population.

RMPG
m m

m
p=

−0 6

0 6

.

.
.

Under the GB2, if A = ARPR(a, p, q), then:

RMPG A a p q F A a p q F A a p q, , , , , , , , , , , ,( ) = − ( ) ( )− −1 2 1 11 1

where F -1 stands for the GB2 quantile function.
3. Quintile share ratio (QSR or S80/S20)

Let x80 (resp. x20) be the 80-th (resp. the 20-th) percentile of the GB2
distribution. The quintile share ratio is the ratio of the sum of the upper
quintile incomes over the sum of the lower quintile incomes.

QSR
X X x

X X x
=

>( )
<( )

E

E
80

20

.

The quintile share ratio under the GB2 hypothesis can be expressed with
the help of the incomplete moments of order 1 (equation (3), with k = 1):

QSR a p q F x a p q F x a p q, , ; , , , ; , , , .( ) = − ( ) ( )( ) ( )1 1 11 80 1 20

4. Gini index
There are many definitions of the Gini index. One of them is:
Let X and Y be two identically distributed independent positive random
variables. Then, the Gini index is defined as:

Gini
X Y

X
=

−( )
( )

E
E2

.
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The index is an inequality indicator measuring the expected absolute
difference between two independently selected incomes relative to the
mean income. The Gini index of the GB2 distribution is given by
McDonald (1984). An efficient algorithm to compute the Gini index
from its analytical expression has been described in Graf (2009), and
implemented in the GB2 package in R.

As the four indicators are scale-invariant under the GB2, we can ask ourselves
how these indicators behave in relation to the shape parameters a, p, and q. A
sensitivity plot, implemented in the R package GB2, illustrates this. Figure 1
shows how the values of ARPR vary in relation to the parameters p and q, for
different values of a which is kept fixed. We can see that for small values of a,
ARPR depends on all three parameters, but when a increases, the dependence on
q diminishes.

Figure 1. Sensitivity Plot of the ARPR

Review of Income and Wealth, Series 60, Number 4, December 2014

© 2013 International Association for Research in Income and Wealth

826



3. Maximum Pseudo-Likelihood Estimation of the Parameters of the
GB2 Distribution Under Cluster Sampling

In the classical case of maximum likelihood estimation, the loglikelihood
function is defined as a sum over the sample of the log density evaluated at the data
points. The EU-SILC being a complex survey, estimating a model based on the
EU-SILC microdata amounts to incorporating the sampling weights in the likeli-
hood, producing a pseudo-likelihood (e.g., Skinner et al., 1989; Chambers, 2003).
The pseudo-loglikelihood is computed as a weighted sum over the sample of the
log density of the distribution, where the weights are the sampling weights. It is a
function of the parameters of the distribution. Maximizing it provides us with a set
of parameters which fits the GB2 to the income variable by taking the sampling
design into consideration.

In the EU-SILC framework, the data are observed at two levels—personal
level and household level. Households (clusters) are sampled and then all persons
in the selected households enter the sample. The personal disposable income is
measured as an equivalized measure over all household members (Eurostat, 2009).
All persons of a household have the same equivalized disposable income (xi),
which is also the household’s equivalized disposable income, thus the observations
are not independent (Clémenceau and Museux, 2007). The sampling weights (the
sampling weight of a household equals the sampling weight of each person belong-
ing to the household) are not simply the inverse of the inclusion probabilities but
are obtained through calibration and adjusted for non-response (Osier et al.,
2006).

Let m, ni and n denote, respectively, the number of households in the sample,
the number of persons belonging to household i, and the number of persons in the
sample. Then, the weighted (pseudo)-loglikelihood function, at the household
level, is defined as

�m i i i
i

m

w n f xθ θ( ) = ( )
=
∑ log ; ,

1

where f(·) is the GB2 density, given in equation (1) and wi are the sampling weights.
In order to avoid large numerical values in the computation, we scale �m(q) by
dividing by the sum of weights ∑ =i

m
i iw n1 . In classical likelihood theory, the weights

are equal to one and thus sum to the sample size. To obtain the pseudo-
loglikelihood at a similar scale one should multiply �m(q) by the sample size n.

The partial derivatives of the pseudo-loglikelihood function are readily
obtained as weighted sums of the partial derivatives of log(f(xi)), evaluated at the
data points. Thus, the first partial derivatives of �m with respect to q are:

′ ( ) = ( )
=
∑�m i i i
i

m

w n u xθ θ; ,
1

where

u x f x f xi i i; log ; log ;θ θ
θ

θ( ) = ( )[ ]′ =
∂

∂
( )

Review of Income and Wealth, Series 60, Number 4, December 2014

© 2013 International Association for Research in Income and Wealth

827



is the 4 by 1 vector of the first partial derivatives of log( f (xi; q)) with respect to q,
for a given observation i.

Similarly, the second partial derivatives of �m with respect to q are:

′′ ( ) = ( )
=
∑�m i i i
i

m

w n h xθ θ; ,
1

where

h x f x f xi i i; log ; log ;θ θ
θ

θ( ) = ( )[ ]″ =
∂

∂
( )

2

2

is a symmetric 4 by 4 matrix of the second partial derivatives of log( f(xi; q)) with
respect to q, for a given observation i.

The quantity

I mθ θ( ) = − ′′ ( )( )E �

is called the Fisher information matrix. For the GB2 distribution, the Fisher
information matrix was computed by Prentice (1975) and more recently by
Brazauskas (2002).

In classical maximum likelihood theory,

E ′ ( )( ) =�m θ 0,

var .′ ( )( ) = − ′′ ( )( )� �m mθ θE

The value of the parameter q that maximizes the pseudo-loglikelihood is
called the PML estimate θ̂m and is obtained by setting the first derivatives equal to
zero. Thus we have

(4) ′ ( ) =�m m
ˆ .θ 0

When solving the likelihood equations, it is possible to express p̂ and q̂ as
functions of a and b. The profile pseudo-loglikelihood logLp has only two para-
meters q ′ = (a, b). It is given by replacing q in the full pseudo-loglikelihood by
θ θ θ θ= ( ) ( )( ) = ′ ′( ) ′( )( )a b p a b q a b p q, , , , , , ,ˆ ˆ ˆ ˆ :

log log ; .L w f x wp i i i= ′( )∑ ∑θ

Its advantages over the full pseudo-loglikelihood are that contour plots can be
produced (see Figure 5) and that the fitting algorithm is faster.

Functions performing PML estimation based on the full and the profile
pseudo-loglikelihoods are implemented in the R package GB2 (Graf and
Nedyalkova, 2011a). PML estimation is obtained through methods for non-linear
optimization like the BFGS method. Initial values for a and b come from the Fisk
distribution, which is GB2 with p = q = 1. Moment estimators of a and b for this
distribution are (see Graf, 2007):
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ˆ logm w x wlog i i i= ∑ ∑

ˆ log ˆv w x m wlog i i log i= −( )∑ ∑2

(5) ˆ ˆa vlog= π 3

(6) ˆ exp ˆ .b mlog= ( )

3.1. Variance Estimation of the Parameters of the GB2 Distribution
and the Derived Indicators

A sandwich variance estimator is a common tool used in survey sampling for
variance estimation of maximum likelihood estimates. It requires the vector of
scores and the Fisher information matrix. However, if we do not know the true
density, then we can use the so called robust sandwich variance estimator proposed
by Huber (1967) and independently derived also by White (1980, 1982). An exposi-
tory paper on this estimator is Freedman (2006). Pfeffermann and Sverchkov
(2003) use this estimator in the survey sampling setting. Another name for this
method of estimation is the Taylor-series linearization method.

We can approximate ′ ( )�m mθ̂ by the first two terms of a Taylor series around
q. From equation (4), we have

′ ( ) ≈ ′ ( ) + ′′ ( ) −( ) =� � �m m m m m
ˆ ˆθ θ θ θ θ 0

ˆ ˆ .θ θ θ θ θm m m m m− ≈ − ′′ ( )[ ] ′ ( ) − ′ ( )( )−� � �1

Then the variance of the maximum likelihood estimate is

var Eˆ ˆ ,θ θ θ θ θ θm m m mV( ) = −( ) ≈ − ′′ ( )[ ] ( ) − ′′ ( )[ ]− −2 1 1� �

where

V m m m
Tθ θ θ θ( ) = ′ ( )( ) = ′ ( )( ) ′ ( )( )( )var .� � �E

Thus the linearized sandwich variance estimator is

(7) var� � �ˆ ˆ ˆ ˆ ˆ ,θ θ θ θm m m m m mV( ) ≈ − ′′ ( )⎡⎣ ⎤⎦ ( ) − ′′ ( )⎡⎣ ⎤⎦
− −1 1

where ′′ ( )�m θ is estimated directly from the sample. Thus we have

′′ ( ) = ( )
=
∑�m m i i i m
i

m

w n h xˆ ; ˆθ θ
1
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and ˆ ˆV mθ( ) can be calculated in the following way using all the available design
information.

Let pIi denote the first-order inclusion probability of a household in the
sample si and π Ii i1 2

, respectively, the second-order inclusion probability for two
different households i1 and i2 with respective sample sizes ni1

and ni2
. The Horvitz–

Thompson estimator of V(q) is:

(8) ˆ ˆ ; ˆ ; ˆ
,

V w w u x u xm i i i m i m

T

i i

m
jk j k

jkk

θ θ θ
π π π

π
( ) = ( ) ( ) −

= =
∑ 1 2 1 2

1 2 1 1

nni

j

ni 21

1
∑∑

=

,

where pj and pk are the inclusion probabilities for persons j and k. This gives us
(Särndal et al., 1992)

(9) π πj Ii ij s= ∈if .

(10) π
π
πjk

Ii i

Ii i i i

j k s

j s k s
=

∈
∈ ∈

⎧
⎨
⎩

if

if and

, ,

,
1 2 1 2

where si1
and si2

denote, respectively the samples with respective sizes ni1
and ni2

.
If we plug equations (9) and (10) into equation (8) we find the general

design-based formula for the midterm of the sandwich variance estimator:

(11) ˆ ˆ ; ˆ ; ˆV w n w n u x u xm i i i i i m i m

T Ii i Ii Ii

I

θ θ θ
π π π

π
( ) = ( ) ( ) −

1 1 2 2 1 2

1 2 1 2

ii ii i

m

1 21 2 1,

,
=

∑

where ni1
and ni2

are, respectively, the number of persons in samples si1
and si2

.
If we suppose that the households are independently (but not identically due

to the different ni) distributed, then

π π πIi i Ii Ii i i
1 2 1 2 1 2= ≠if .

In this case, equation (11) becomes

ˆ ˆ ; ˆ ; ˆ .V w n u x u xm i i i m i m

T

Ii
i

m

θ θ θ π( ) = ( ) ( ) −( )
=
∑ 2 2

1

1

Moreover, if we neglect the finite population correction, thus supposing
1 - pIi � 1 we obtain a simplified formula for the midterm of the sandwich vari-
ance estimator:

(12) ˆ ˆ ; ˆ ; ˆ .V n w u x u xm i i i m i m

T

i

m

θ θ θ( ) = ( ) ( )
=
∑ 2 2

1

The midterm of the sandwich variance estimator (11) can be calculated
numerically, for example using the R package survey (see Lumley, 2010). In this
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case, inclusion probabilities, sample strata sizes, etc. are considered when calcu-
lating the variance of the scores. We have successfully implemented this in our
simulation study (Graf and Nedyalkova, 2011b). We have seen that our variance
estimate by linearization using the simplified formula for the variance of the scores
(equation 12) is almost equal to the design variance calculated with the package
survey for the one-stage sampling designs.

Now we would like to estimate the variance of the fitted indicators, to con-
struct confidence intervals and to compare with their empirical estimates. We
know that the median, ARPR, RMPG, QSR, and Gini can all be expressed as
functions of the GB2 parameters a, b, p, and q (see Section 2). Thus in order to
obtain a variance estimator for a given indicator, we can apply the delta method
(see, e.g., Davison, 2003). If we denote, for example, ˆ ˆA A m= ( )θ , the PML estimate
of the ARPR, then by the delta method, we have:

var var� �ˆ
ˆ

ˆ
ˆ

ˆ

ˆ
,A

A A

m

m

m

( ) =
∂
∂

′ ( ) ∂
∂θ

θ
θ

where var� θ̂m( ) is given in equation (7). The derivatives of the indicators with
respect to the vector of parameters are calculated numerically. Next, we can easily
compute confidence intervals and confidence domains.

4. Robustification of the Sampling Weights

Due to the fact that pseudo-maximum likelihood estimators are often sensi-
tive to extreme weights we came to the idea of robustifying the sampling weights.
Our procedure is inspired by, but does not directly follow, the MAD-rule (see Luzi
et al., 2007. We start from the Fisk distribution, which is a GB2 with p = q = 1. Its
cumulative distribution function (see Kleiber and Kotz, 2003, p. 222) is given by:

F x a b
x b

x b

a

a; , , , .1 1
1

( ) =
( )
+ ( )

The a-th quantile of the Fisk(a, b) is given by:

(13) x b
a

α
α

α
=

−( )1

1

.

From equation (13), it follows that:

x

b

x

b
α α1 1− = .

Thus the geometric mean between the two symmetric quantiles xa and x1-a is
equal to b, the median under the Fisk distribution.

Let x denote the observed value, in our case, the equivalized income. Our
procedure is as follows:
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1. First, we define our scale as:

(14) d
x

b

x

b
= −−1 α α ,

where a takes a small value, e.g. 0.001.
2. Next, the correction factor is calculated as follows:

(15) corr c
d

b x
d

x b
=

− −
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

max , min , , ,1
1 1

where c is a constant that can take different values, e.g. 0.2, and can be
used to limit the correction factor. The correction factor is of Huber-
type (Huber, 1981). One can easily find that the correction factor corr is
given by

corr

c x b c d c

dx b x c d c x b d

d x b d=

≤ +( )
−( ) +( ) ≤ ≤ +( )

+( ) ≤ ≤
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,

,1 1

1 1 1 ++
−( ) + ≤ ≤ +( )

+( ) ≤

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

1

1

,

,

.

db x b d x b d c c

c d c c x b

if

if

3. The sampling weights are multiplied by the correction factor corr.
4. The weights are multiplied by the ratio of the sum of the unadjusted

weights and the sum of the adjusted weights, in order to keep the sum of
weights constant.

This robust procedure tends to make the fitted GB2 parameters p and q closer.
For example, in our simulation study with the AMELIA dataset (Alfons et al.,
2011), if this adjustment is processed, we downweight about 0.2 percent of the
observations, essentially on the left tail. Figure 2 shows the correction of the
weights obtained with Fisk parameter a = 1.78 and tuning parameter a = 0.01
(which implies that d ª 13), and c = 0.1. These parameters are similar to those used
with the AMELIA dataset.
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Figure 2. Correction Factor for the Robustification of Weights (Huber-Type Function). Dotted line
corresponds to limit c. x is the income and b the median income
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5. A New Method of Estimation of Income Data from a Set of Indicators

5.1. Nonlinear Fit for Indicators

Let us suppose that we have access to indicators fitted on the empirical data.
It is then possible to reconstruct the whole income distribution, assuming the GB2
model fits acceptably the empirical data. Consider a set of indicators A = (median,
ARPR, RMPG, QSR, Gini) and their corresponding GB2 expressions AGB2(a, b,
p, q). The method of estimation we developed (hereafter referred to as method of
nonlinear fit for indicators) consists of finding the set of GB2 parameters a, b, p,
and q that minimizes the distance between the empirical estimates of the indicators
Aempir and their GB2 representations AGB2(a, b, p, q):

c A A a b p qi empir i GB i
i

, , , , , ,− ( ){ }
=
∑ 2

2

1

5

where the weights ci take the differing scales into account.
This idea was successfully implemented in the package GB2 in R using a

non-linear regression model. Instead of fitting the GB2 parameters all together, we
process in two consecutive steps, which appears to be more efficient:

• In the first step, we use the set of indicators A, excluding the median. These
indicators are scale-invariant and their corresponding expressions are given
as functions of a, ap, and aq (we set b = 1), where ap denotes the product of
the two parameters a and p and aq the product of a and q. We choose ap and
aq instead of simply choosing p and q because constraints on the moments
(see equation 2) imply bounds on ap and aq. We have chosen ap > 1 and
aq > 2, so that at least E(1/X) < • and E(X 2) < • under the GB2. The
bounds for the parameter a can be defined in function of the coefficient of
variation of the PML estimate of parameter a or simply as 0.2 · a0 and
1.8 · a0, where a0 denotes the initial value of the parameter a. Thus, from the
first step we deduce the fitted parameters ˆ, ˆa p and q̂.

• In the second step, only the parameter b is estimated, fitting a non-linear
regression model on the empirical median in function of the GB2 median
calculated with the NLS estimates of the parameters a, p, and q obtained in
the first step. Thus we obtain the fitted parameter b̂.

Initial values for the parameters can be taken as the moment estimators of
the Fisk distribution in equations (6) and (5), and p = q = 1. A natural choice can
also be an initial value for b given by the empirical median, and for a by the
inverse of the empirical Gini coefficient. This is in accordance with the informa-
tion the user is supposed to have, namely the set of indicators A. If the PML
estimates of the GB2 parameters are known, they give a third choice for the
initial values.

The weights ci, i = 2, . . . , 5 should be selected in order to take the different
scales of the indicators into account. A natural choice can be the inverse of the
empirical variances of the indicators. Another choice of weights, which we have
used in our procedure with success, is the set of weights ci = 0.1, 0.1, 1, 1. In this
case more weight is given to QSR and Gini. The user is however free to select his
own set of weights.
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6. An Application

In this section we present different plots, produced with R, for the case of the
EU-SILC survey, in which the method of non-linear fit for indicators is compared
with the method of PML estimation. Some numerical results of the fitted GB2
parameters and indicators are shown.

6.1. Distribution Plots

We present two different types of plots. The first plot is a cumulative distri-
bution plot in which the GB2 cumulative distribution function is plotted against
the empirical distribution function. The second plot is a density plot in which are
plotted a kernel density estimate (Epanechnikov) and a GB2 density estimate of
the income variable. The Epanechnikov kernel is given by a quadratic weight
function within an interval around each observed value. The length of the interval
is called the bandwidth and N is the sample size.

Figure 3 shows an example of the fitted GB2 distribution by PML estimation
and the method of non-linear fit for indicators with the Austrian EU-SILC data,
2006. From the plot it can be seen that the GB2 fits the empirical distribution well
and that the fit by PML is slightly better than the non-linear fit for the indicators.

Figure 4 shows the cumulative distribution plots of the fitted GB2 distribu-
tion by the methods of maximum pseudo-likelihood estimation and non-linear fit
for indicators for the remaining 25 participating countries in the EU-SILC survey,
2006. We can again conclude that the GB2 correctly fits the empirical income
distribution and that the NLS method guesses the income distribution quite well.

6.2. Contour Plot of the Profile Loglikelihood

Figure 5 presents a contour plot of the profile pseudo-loglikelihood (see equa-
tion 3) for the Austrian EU-SILC sample, 2006. The Fisk, PML prof, and NLS
estimates of the parameters a and b are denoted respectively as “F,” “P,” and “N.”
Each contour represents a value of the profile pseudo-loglikelihood. We can see
that the value of the PML estimate based on the profile pseudo-loglikelihood (“P”)
is close to the small quadrangle on the figure, which is the graphical representation
of the maximum value of the pseudo-loglikelihood. We can notice that the profile
pseudo-loglikelihood is rather flat around the maximum. Thus, different sets of
parameters produce close values of the profile pseudo-loglikelihood. The values of
the parameters a, b and the profile pseudo-loglikelihood for Fisk, PML prof, and
NLS estimates are given in Table 1.

6.3. Estimated Parameters and Indicators, EU-SILC Participating
Countries 2006

Tables 2 and 3 present the fitted GB2 parameters, the estimated median,
ARPR, RMPG, QSR and Gini index for the 26 participating countries in the
EU-SILC 2006 survey, i.e. AT, BE, CY, CZ, DE, DK, EE, ES, FI, FR, GR, HU,
IE, IS, IT, LT, LU, LV, NL, NO, PL, PT, SE, SI, SK, UK. Estimates are based on
PML estimation using the full and profile pseudo-loglikelihoods with adjusted
sampling weights following the ad-hoc procedure described in Section 4, and the
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method of non-linear fit for indicators applying as initial values for a and b,
respectively, the inverse of the Gini coefficient and the empirical median, and
p = q = 1.

We can see from the table that PML estimation tends to overestimate ARPR
and RMPG. However the robustification of the sampling weights has improved
the point estimates. We do not provide tables with the results using the non-
adjusted sampling weights. Comparative tables of PML estimation with and
without adjusting the sampling weights, based on the simulated universe AMELIA
are provided in Graf and Nedyalkova (2011b). We can also see that the methods
of PML estimation using full and profile pseudo-likelihoods give similar results,
which is expected as analytically the solutions to the optimization problem are
similar. At the optimum of the full PML, the parameters p and q should verify the
constraints utilized in the profile PML. The method of non-linear fit for indicators
succeeds in reproducing the empirical indicators.
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Figure 3. Distribution and Density Plots, Austria 2006. Top Panels: Non-Linear Fit for Indicators.
Bottom Panels: PML Estimation Using the Full Pseudo-Loglikelihood
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7. Discussion

We have seen that parametric distributions may be useful in a survey setting,
i.e. the EU-SILC survey. We have chosen the GB2 as a parametric model for the
empirical income distribution. This approach offers the advantage of presenting
monetary indicators as functions of the parameters of the chosen distribution.
Thus parametric modeling allows us to stabilize estimation and gain insight into
the relationship between indicators and the distribution of the parameters. The
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Figure 5. Contour Plot of the Profile Loglikelihood, Austria 2006

TABLE 1

Profile Pseudo-Loglikelihood and Parameter Values
Corresponding to the Points Depicted in Figure 5

a b pseudo-loglikelihood

F 3.747 17,642.39 -10.42652
P 4.990 18,995.88 -10.42299
N 1.523 15,049.95 -10.44769
Graphical ML 5.131 18,818.55 -10.42302
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TABLE 2

GB2 Fitted Parameters and Indicators, Countries 1–13

Country Type a b p q Median ARPR RMPG QSR GINI

AT Direct – – – – 17,854 12.547 15.425 3.647 0.253
AT NLS 1.523 15,050 5.195 4.079 17,854 12.547 15.425 3.646 0.257
AT PML full 4.964 19,005 0.654 0.790 17,911 12.716 19.833 3.661 0.253
AT PML prof 4.990 18,996 0.650 0.784 17,911 12.710 19.840 3.662 0.253

BE Direct – – – – 17,225 14.547 19.034 3.960 0.272
BE NLS 1.941 18,719 2.474 2.853 17,225 14.547 19.034 3.960 0.270
BE PML full 3.367 18,643 1.050 1.319 17,043 13.707 19.740 3.791 0.260
BE PML prof 3.279 18,706 1.090 1.376 17,041 13.729 19.698 3.787 0.260

CY Direct – – – – 14,532 15.747 18.965 4.268 0.288
CY NLS 1.132 13,919 6.487 6.194 14,532 15.747 18.965 4.268 0.285
CY PML full 2.642 14,245 1.564 1.536 14,366 14.343 18.922 4.128 0.280
CY PML prof 2.551 14,192 1.658 1.617 14,361 14.362 18.829 4.124 0.280

CZ Direct – – – – 4,797 9.796 16.967 3.516 0.253
CZ NLS 7.017 4,619 0.537 0.465 4,797 9.796 16.967 3.516 0.252
CZ PML full 4.846 4,609 0.854 0.751 4,796 10.213 16.187 3.457 0.248
CZ PML prof 4.869 4,610 0.849 0.746 4,796 10.208 16.198 3.457 0.248

DE Direct – – – – 15,646 12.339 19.625 3.800 0.260
DE NLS 5.831 15,902 0.555 0.586 15,646 12.339 19.625 3.800 0.263
DE PML full 7.481 16,351 0.400 0.468 15,680 12.458 20.791 3.703 0.255
DE PML prof 7.530 16,348 0.397 0.465 15,680 12.448 20.796 3.701 0.255

DK Direct – – – – 22,718 11.326 15.159 3.241 0.230
DK NLS 0.870 26,747 14.380 16.525 22,718 11.289 15.169 3.257 0.233
DK PML full 6.332 24,834 0.517 0.732 22,665 11.275 19.302 3.174 0.223
DK PML prof 6.261 24,840 0.525 0.743 22,661 11.262 19.255 3.172 0.223

EE Direct – – – – 3,645 18.141 21.841 5.361 0.328
EE NLS 1.878 3,354 2.203 1.929 3,645 18.141 21.841 5.360 0.331
EE PML full 2.597 3,972 1.116 1.298 3,679 18.804 24.781 5.517 0.331
EE PML prof 2.557 3,984 1.140 1.331 3,680 18.834 24.788 5.511 0.331

ES Direct – – – – 11,493 19.760 25.399 5.109 0.308
ES NLS 0.912 22,321 5.824 10.393 11,493 19.474 25.464 5.164 0.316
ES PML full 2.691 15,675 0.914 1.738 11,476 19.465 27.468 5.108 0.307
ES PML prof 2.722 15,628 0.900 1.707 11,477 19.461 27.491 5.109 0.306

FI Direct – – – – 18,317 12.523 14.459 3.631 0.258
FI NLS 1.078 12,092 11.079 7.198 18,317 12.523 14.459 3.632 0.257
FI PML full 3.803 18,083 1.091 1.101 18,024 11.279 16.886 3.466 0.246
FI PML prof 3.769 18,074 1.106 1.115 18,023 11.279 16.854 3.465 0.246

FR Direct – – – – 16,197 13.050 18.361 3.936 0.272
FR NLS 3.561 15,957 1.075 1.034 16,197 13.050 18.361 3.936 0.271
FR PML full 4.000 16,251 0.900 0.911 16,179 12.947 18.817 3.894 0.269
FR PML prof 3.991 16,248 0.903 0.914 16,178 12.946 18.806 3.893 0.269

GR Direct – – – – 9,880 20.137 25.049 5.698 0.337
GR NLS 1.270 11,471 3.395 4.037 9,880 20.137 25.049 5.698 0.337
GR PML full 2.433 10,794 1.176 1.410 9,803 19.391 25.478 5.695 0.336
GR PML prof 2.425 10,800 1.182 1.418 9,803 19.397 25.477 5.694 0.336

HU Direct – – – – 3,854 15.650 23.309 5.165 0.327
HU NLS 5.862 3,842 0.453 0.448 3,854 15.650 23.309 5.165 0.325
HU PML full 6.163 3,906 0.424 0.446 3,841 15.538 23.560 4.951 0.315
HU PML prof 6.283 3,906 0.414 0.436 3,841 15.526 23.617 4.957 0.315

IE Direct – – – – 19,679 18.464 16.358 4.870 0.319
IE NLS 0.714 5,356 21.948 8.870 19,679 17.688 16.584 5.051 0.321
IE PML full 2.047 16,587 2.379 1.816 19,372 15.810 18.841 4.688 0.307
IE PML prof 1.822 16,037 2.945 2.179 19,372 15.924 18.616 4.666 0.306
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TABLE 3

GB2 Fitted Parameters and Indicators, Countries 14–26

Country Type a b p q Median ARPR RMPG QSR GINI

IS Direct – – – – 28,015 9.540 18.480 3.578 0.257
IS NLS 7.794 27,600 0.451 0.425 28,015 10.247 17.982 3.514 0.250
IS PML full 8.162 27,573 0.436 0.406 28,065 9.949 17.764 3.470 0.248
IS PML prof 8.283 27,566 0.429 0.399 28,063 9.938 17.791 3.472 0.248

IT Direct – – – – 14,559 19.216 23.210 5.233 0.316
IT NLS 0.632 17,728 14.071 15.893 14,559 19.214 23.211 5.234 0.322
IT PML full 3.396 17,318 0.711 1.062 14,584 18.816 26.652 5.226 0.314
IT PML prof 3.390 17,333 0.713 1.066 14,584 18.822 26.659 5.225 0.314

LT Direct – – – – 2,536 19.927 28.852 6.163 0.347
LT NLS 4.317 2,857 0.488 0.657 2,536 19.927 28.852 6.163 0.346
LT PML full 2.883 2,942 0.807 1.077 2,552 20.717 28.369 6.336 0.352
LT PML prof 2.946 2,926 0.786 1.041 2,551 20.679 28.366 6.349 0.353

LU Direct – – – – 29,683 13.925 19.403 4.082 0.278
LU NLS 3.428 29,996 1.054 1.082 29,683 13.925 19.403 4.082 0.277
LU PML full 3.278 28,902 1.185 1.106 29,727 13.603 18.571 4.087 0.279
LU PML prof 3.198 28,869 1.230 1.145 29,728 13.633 18.519 4.084 0.279

LV Direct – – – – 2,546 22.731 24.315 7.303 0.386
LV NLS 0.645 1,170 13.574 8.351 2,546 22.731 24.315 7.303 0.387
LV PML full 2.521 2,763 0.931 1.076 2,551 22.039 29.206 7.502 0.388
LV PML prof 2.468 2,770 0.959 1.111 2,551 22.074 29.195 7.485 0.387

NL Direct – – – – 17,293 9.399 16.601 3.571 0.255
NL NLS 7.586 16,367 0.508 0.409 17,293 9.399 16.601 3.571 0.257
NL PML full 5.214 17,499 0.695 0.698 17,479 11.311 17.968 3.574 0.252
NL PML prof 5.240 17,495 0.691 0.693 17,478 11.304 17.977 3.574 0.252

NO Direct – – – – 27,806 11.001 18.117 3.967 0.280
NO NLS 7.050 26,401 0.497 0.411 27,806 11.001 18.117 3.967 0.278
NO PML full 10.552 28,955 0.288 0.346 27,770 11.414 20.424 3.411 0.238
NO PML prof 10.270 28,953 0.297 0.358 27,751 11.393 20.353 3.403 0.238

PL Direct – – – – 3,112 19.018 24.977 5.605 0.332
PL NLS 2.539 3,359 1.140 1.322 3,112 19.018 24.977 5.605 0.334
PL PML full 2.744 3,505 0.970 1.221 3,129 19.319 25.976 5.661 0.334
PL PML prof 2.746 3,505 0.969 1.220 3,129 19.319 25.977 5.661 0.334

PT Direct – – – – 7,311 18.466 23.468 6.726 0.377
PT NLS 3.368 6,605 0.859 0.686 7,311 18.467 23.469 6.726 0.383
PT PML full 4.443 6,858 0.569 0.481 7,339 18.422 24.905 7.170 0.396
PT PML prof 4.362 6,861 0.582 0.492 7,342 18.467 24.887 7.151 0.396

SE Direct – – – – 17,795 11.609 20.097 3.334 0.231
SE NLS 7.747 19,003 0.401 0.522 17,795 11.609 20.097 3.334 0.233
SE PML full 6.948 20,412 0.416 0.690 17,920 12.742 21.468 3.300 0.227
SE PML prof 6.858 20,433 0.422 0.702 17,919 12.728 21.422 3.298 0.227

SI Direct – – – – 9,316 11.677 18.539 3.388 0.238
SI NLS 4.697 9,954 0.753 0.930 9,316 11.677 18.539 3.388 0.238
SI PML full 4.342 10,220 0.817 1.070 9,360 11.919 18.682 3.377 0.237
SI PML prof 4.336 10,221 0.819 1.072 9,360 11.920 18.678 3.377 0.237

SK Direct – – – – 3,313 11.608 19.918 4.034 0.280
SK NLS 7.139 3,260 0.448 0.422 3,313 12.018 19.643 4.001 0.276
SK PML full 8.545 3,372 0.362 0.389 3,312 11.718 20.135 3.682 0.256
SK PML prof 8.325 3,372 0.373 0.401 3,312 11.716 20.066 3.677 0.256

UK Direct – – – – 19,375 18.976 22.395 5.208 0.320
UK NLS 0.741 19,096 11.153 11.037 19,375 18.976 22.396 5.208 0.322
UK PML full 2.803 22,495 0.976 1.329 19,412 18.517 25.260 5.176 0.316
UK PML prof 2.758 22,487 1.001 1.359 19,406 18.516 25.195 5.173 0.316
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GB2 is highly flexible due to its four parameters and the presented methodology
could be easily extended to other contexts and other estimators, e.g. finance,
insurance, biostatistics.

A maximum pseudo-likelihood approach of estimation of the parameters of
the GB2 was considered and compared to a new method of “non-linear fit from the
indicators” which tends to reconstruct the whole income distribution, knowing
only the values of the empirical indicators. The pseudolikelihood methodology for
the survey setting was already well known in the literature (see, e.g., Pfeffermann
and Sverchkov, 2003). We have fitted the GB2 model using this approach in the
special context of the EU-SILC survey, where households are sampled according
to a country-dependent sampling design and all persons belonging to a household
are included in the sample, thus the sample is clustered.

When fitting the GB2 to real income data and simulated data (AMELIA), we
noticed that maximum pseudo-likelihood estimation sometimes produces a very
large difference between the fitted and empirical estimates of ARPR and RMPG.
We have developed an ad-hoc procedure for robustification of the sampling
weights, which markedly improves the quality of the point estimates of the fitted
indicators. In Tables 2 and 3 we have provided results on PML estimation for
the case of the EU-SILC survey, 2006. In our simulation report (Graf and
Nedyalkova, 2011b) we provide results based on estimation with and without
using robustified weights. From our study, we have concluded that another advan-
tage of the robustification of the sampling weights is that, in all cases, it signifi-
cantly reduces the relative root mean squared error (RRMSE) of our estimates.

The contribution of this paper is to show that PML estimation can success-
fully be used to fit the GB2 model and estimate the derived indicators in a complex
survey context. It also provides insight into the data. This approach offers the
advantage of easy calculation of variance estimates through linearization of the
parameters and the derived indicators. The proposed sandwich variance estimator
accounts for clustering and we have seen in our simulation study with the
AMELIA universe that the variance of the estimated indicators is smaller than the
variance of the direct estimates. For single-stage sampling designs, we do also not
require the whole design information (Graf and Nedyalkova, 2011b).

The novelty of the paper is the new method we have developed, i.e. the
method of non-linear fit for indicators. We have seen that the five indicators of
poverty and inequality (ARPR, RMPG, QSR, Gini, and median income) provide
enough information about the underlying income distribution to permit the recon-
struction of this distribution under the GB2 hypothesis. While variance estimation
for this methodology has not yet been developed, this is possible if we have the
variance–covariance matrix of the empirical indicators.

All described methods are programmed in the open source software R and are
accessible through the GB2 R package (Graf and Nedyalkova, 2011a), which is
part of the output of the AMELI project.
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