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C1-class interpolation methods that preserve monotonicity and convexity and are thus suitable for
the estimation of the Lorenz curve from grouped data are not widely known. Instead, parametric
models are usually applied for such estimation. Parametric models, however, have difficulty in accu-
rately approximating every part of income/expenditure distributions. This paper proposes two types of
C1-class shape-preserving interpolation methods. One is a piecewise rational polynomial interpolation
(proposed independently by Stineman and Delbourgo) that enables consistent interpolation of the
concentration curves for income/expenditure components, attaining approximately the same accuracy
as that of the existing methods when applied to decile-grouped data or to more detailed aggregation.
Another is a Hybrid interpolation that employs pieces of curves derived from parametric models on
end intervals. Empirical comparisons show that the Hybrid interpolation (with the assistance of
parametric models for class-boundary estimation) outperforms the existing methods even when applied
to quintile-grouped data without class boundaries.
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1. Introduction

Although access to microdata is now no longer exceptional, there are still many
cases in which income distributions1 need to be estimated from grouped data;
for instance, for the measurement of global income inequality and poverty (which
requires data for many countries) or the estimation of income inequality and
poverty in the past (for which microdata no longer exist). In fact, several resear-
chers have recently estimated income distributions from grouped data, such as
Chotikapanich et al. (2007) and Bresson (2009). The recent proposal by Shorrocks
and Wan (2009) of a new method for estimating income distributions from grouped
data (abbreviated hereafter as the SW-method) also supports the view that the
need to make estimations based on available tabulated data still exists.

For estimating the Lorenz curve (LC) of income distribution from grouped
data, parametric models such as the Beta Lorenz curve (β-LC) of Kakwani (1980a)
and the General Quadratic Lorenz curve (GQ-LC) of Villaseñor and Arnold
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(1984, 1989) are frequently applied. The SW-method is applied to make adjust-
ments to fitted parametric models. Nonetheless, it appears natural to also consider
the application of interpolation methods. Gastwirth and Glauberman (1976)
propose the application of Hermite’s polynomial interpolation; in practice,
however, Hermite’s interpolation curves frequently fail to satisfy monotonicity
and convexity, particularly on both end intervals. Simple linear interpolation, on
the other hand, satisfies monotonicity and convexity, but the accuracy is much
worse. Consequently, interpolation methods as a whole appear to have a very poor
reputation (cf. Datt, 1998). That said, interpolation methods have a certain under-
lying attractiveness when considering that parametric models with few parameters
generally have difficulty in accurately approximating every part of heterogeneous
income distributions in societies consisting of various population groups in addi-
tion to the lack of decomposability into the concentration curves (CCs) for income
components.

This paper discusses the application of piecewise rational polynomial inter-
polation of class C1, which is identical to that proposed by Stineman (1980), when
data points to be passed by the interpolation curve satisfy the condition of strict
convexity. Although Stineman’s interpolation was published in a non-academic
journal, his method has been implemented as a function in MATLAB and R, and
has managed to survive until today because of its simplicity and shape-preserving
property that is essentially without restrictions. In the numerical analysis litera-
ture, Delbourgo (1989) later noted that a special case of the interpolation method
of Delbourgo and Gregory (1985a) has a simple form and satisfies strict convexity.
This special case is identical to Stineman’s. This not entirely straightforward
development might hinder widespread use of their method, despite its simplicity
and good property. In this paper, this interpolation is called the Stineman–
Delbourgo–Gregory interpolation, abbreviated as “the SDG interpolation” or
simply SDG, and its generalization by Delbourgo and Gregory (1985a) is abbre-
viated as “the DG interpolation” or simply DG. With the goal of higher accuracy,
this paper also discusses C1-class interpolations that employ pieces of curves
derived from popular parametric models such as the Pareto distribution and β-LC
(Kakwani, 1980a) on end intervals and the SDG interpolant on intermediate
intervals. This latter method is hereafter called “the Hybrid interpolation” or
simply Hybrid.

In addition to being the simplest among rational interpolation methods, SDG
has the advantages of convexity without restrictions and decomposability into
interpolation curves of the CCs for income components by generalizing it to the
DG interpolation. In the literature, Brown and Mazzarino (1984) have applied a
rational interpolation method studied by Gregory and Delbourgo (1982) to inter-
polate the LC; this version of rational interpolation by Gregory and Delbourgo,
however, is only assured of monotonicity as a sufficient condition. The Hybrid
interpolation discussed in this paper is similar to that of Kakwani (1980b), which
employs the Pareto interpolation curve on end intervals and Hermite’s interpolant
on intermediate intervals. The Hybrid interpolation in this paper differs from
Kakwani’s method in that the SDG interpolant always assures the estimated LC
of monotonicity and convexity on intermediate intervals, and the use of the β-LC
improves the accuracy of the estimation on the right-end interval. This paper also
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provides estimation methods for the derivatives of intermediate points using the
β-LC or GQ-LC when class boundaries of grouped data are unavailable. These
methods reduce the deterioration of accuracy to a minimum and maintain the
superiority of the Hybrid interpolation over existing methods, even when applied
to quintile-grouped data without class boundaries.

This paper is organized as follows. In Section 2, SDG is introduced along with
estimation methods for derivatives at intermediate points and endpoints that are
required to be estimated when not given. Section 3 discusses the mixed use of
different types of interpolants, that is, the Hybrid method of substituting pieces
of curves derived from some parametric models such as the Pareto, log-normal
distribution, and/or β-LC for the SDG interpolant on end intervals. Section 4
considers methods of interpolating the CCs of income components consistently
with the LC for overall income using DG. In Section 5, the two proposed types of
interpolation are empirically compared with existing methods for LC estimation
from grouped data using microdata for seven countries. In Section 6, DG is
applied to ten sets of income/expenditure data classified according to types of
sources/purchased-items for five countries to estimate the CCs for the components,
and the results are compared with the piecewise linear and quadratic (composite
Simpson) interpolation. The final section offers concluding remarks.

2. Interpolation of the Lorenz Curve by the
Stineman–Delbourgo–Gregory Method

2.1. Formula and Properties

Suppose F(x) is the cumulative distribution function (CDF) of a posi-
tive income variable with a finite expectation μ. Its LC, then, is represented as
LC p F d

p
( ) = ∫ ( )−

0
1 π μ π (cf. Gastwirth, 1971; Kleiber and Kotz, 2003). Consider

that a division of the unit interval [0, 1] is given as 0 = p1 < p2 < . . . < pn = 1. Let li

denote LC(pi), i = 1 . . . n, and let the interval between pi and pi+1, its width and the
slope of the line passing through (pi, li) and (pi+1, li+1) be denoted as follows:

(1) I p p h p p l l h i ni i i i i i i i i i= [ ] = − = −( ) = −+ + +, , , , , .1 1 1 1 1Δ for �

Furthermore, assuming that F(x) is a strictly increasing continuous function, then
the data points (in other words, the Lorenz coordinates) (pi, li), i = 1 . . . n, form a
strictly convex set, i.e., Δi, i = 1 . . . n, satisfying the following inequalities:

(2) Δ Δ Δ1 2 1< < < −� n .

A function L(p) on the closed interval [0, 1] is called an interpolation curve for
LC(p) when L(p) passes through the given data points, i.e., L(pi) = li, i = 1 . . . n. We
only consider continuously differentiable L(p) which has derivatives equal to those
of LC(p) at the data points, i.e., L(p) satisfies the following equalities:

(3) L p d LC p F p i ni i i i
1 1 1 0 1( ) ( ) −( ) = = ( ) = ( ) ≥( ) =μ for , , .�

Such interpolation is called a C1-class interpolation. Note that {di} satisfy the
following inequalities:
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(4) d d di i i n n1 1 1 1< < < < < < < <− −Δ Δ Δ Δ� � .

The inequalities in (4) imply that the following quantities are strictly positive:

(5) A d B d i ni i i i i i= − = − =+1 1Δ Δ, , , .for �

Stineman (1980) and Delbourgo (1989) have proposed a C1-class piecewise
interpolation method that employs the following rational polynomial as an
interpolant on each interval:

(6) L p h l p p l p p
A B p p p p

A pSDG i i i i i
i i i i

i i

( ) = −( ) + −( )[ ]− −( ) −( )−
+ +

+1
1 1

1

++ −( ) + −( )
∈

1 p B p p
p I

i i
ifor .

In the case of Ai = Bi, LSDG(p) is a piecewise quadratic-polynomial interpolation
equivalent to Hermite’s interpolation. The first and second derivatives of LSDG(p)
are represented as follows:

(7) L p
A d p p A B p p p p B d p p

SDG
i i i i i i i i i i1
2

1
2

1
2

12( ) + + +( ) =
−( ) + −( ) −( ) + −Δ ii

i i i i
iA p p B p p

p I
( )

−( ) + −( )[ ]
∈

+

2

1
2 for ,

(8) L p
h A B

A p p B p p
p ISDG

i i i

i i i i
i

2
1 2 2

1
3

2( )
−

+

( ) =
−( ) + −( )[ ]

∈for .

Because L pSDG
2 0( ) ( ) > , LSDG(p) is strictly convex and, thus, strictly increasing

on the whole [0, 1] interval when di ≥ 0. As the equalities LSDG(0) = p1 = 0 and
LSDG(1) = pn = 1 also hold true, LSDG(p) satisfies all required conditions for the LC
(Thompson, 1976); thus, LSDG(p) has an accompanied CDF that can be regarded as
an approximation of F(x). In cases where the income variable has point masses,
F −1(p) is not strictly increasing; its LC is not strictly convex; and there may be an
interval on which equalities di = Δi = di+1 hold. By applying a linear interpolant to
such intervals rather than the SDG interpolant, the interpolation curve remains in
the C1-class and satisfies the conditions of the LC.2 The advantages of SDG are
simplicity and the desired property that it satisfies strict convexity essentially
without restrictions, in contrast to the Hermite interpolation that fails to satisfy
convexity in the cases 2Ai < Bi or Ai > 2Bi (Gastwirth and Glauberman, 1976).3

2The SDG interpolation satisfies convexity even if d1 < 0. Thus, SDG is also applicable to the case
in which there are negative incomes. However, if negative incomes are not negligible, income data
is inappropriate as a measure of the standard of living. Alternative data or variables should be
considered in such cases.

3As shown by Delbourgo (1989), if the LC is fourth continuously differentiable and min LC(2) > 0,
the approximation error of LSDG(p) is in the order of O hi

4( ) on interval Ii, the same order as the Hermite
interpolation. However, because in many cases the LC needs to be interpolated from relatively coarsely
grouped data such as quintile- or decile-grouped data, a higher order of accuracy does not necessarily
imply higher accuracy in practice. Furthermore, it also should be noted that the LC cannot be generally
assumed to be fourth continuously differentiable at both endpoints. As empirically shown in Section 5,
SDG attains the same level of accuracy as the Hermite interpolation unless the latter method violates
the conditions of the LC.
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2.2. Estimating the Derivatives of Intermediate Points

The LC for an income distribution with a finite expectation μ has the con-
tinuous derivative LC (1)(p) = F −1(p)/μ over 0 ≤ p < 1 when its CDF F(x) is strictly
increasing or its inverse CDF F −1(p) is continuous. Thus, the derivatives at the
Lorenz coordinates corresponding to the data points in Section 2.1 can be calcu-
lated from grouped data when the class boundaries of the grouped data F −1(pi),
i = 1, . . . , n, are specified.4 However, when we need to estimate the LC from
quintile- or decile-grouped data, class boundaries are not specified in many
cases. For instance, the World Income Inequality Database (WIID) provided by
UNU-WIDER (2008) does not contain class boundaries. To apply SDG in such
cases, the derivatives at the data points need to be estimated. In this subsection,
estimation methods for the derivatives at data points other than endpoints are
discussed.

Delbourgo and Gregory (1985b) and Delbourgo (1989) propose estimation
methods in the forms of arithmetic, geometric and harmonic means as follows:

(9)

d h h h h

d h h
i i i i i i i

i i i i i

= +( ) +( )
( ) = ( ) + (

− − −

− −

Δ Δ
Δ Δ

1 1 1

1 1

,

log log log ))( ) +( )
= +( ) +( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

− − −

h h

d h h h h
i i

i i i i i i i

1

1 1 11

, .

Δ Δ

These methods are hereafter called the arithmetic, geometric, and harmonic
means, respectively. The derivatives estimated in (9) satisfy the inequalities in
(4) and approximate the true value in the order O(h2), where h = max{hi−1, hi}.5

However, as shown in Section 5, all methods in (9) fail to attain sufficient accuracy.
Instead, we consider applying the β-LC of Kakwani (1980a), represented as
Lβ(p) = p − θpγ(1 − p)δ, as well as the GQ-LC of Villaseñor and Arnold (1984,

1989), represented as L p bp e mp np egq ( ) = − + + + +⎡⎣ ⎤⎦
1
2

2 2 . Parameters θ, γ, δ of

the β-LC passing through three successive data points, (pi−1, li−1), (pi, li) and
(pi+1, li+1), can be easily obtained by solving the following simultaneous linear
equations:

(10) log log log log , , .p l p p k i i ik k k k−( ) = + + −( ) = − +θ γ δ 1 1 1for

The derivative at pi of the fitted β-LC is calculated as shown in (11). L piβ
1( ) ( ) shall

be used as di, rather than the estimates in (9). As for the estimation of d2, dn−1, i.e.,
the derivatives at the leftmost and rightmost intermediate data points p2, pn−1, the
β-LCs fitted for estimating d3, dn−2, respectively, shall be used.

(11) L p p p p pi i i i iβ
γ δθ γ δ1 1 1 1( ) ( ) = − −( ) − −( )[ ].

4Normally, the average income μ is available or computable using grouped data.
5When the estimated derivatives are in order O(h2) of accuracy, SDG approximates the LC in order

O(h3) in the case that the LC is fourth continuously differentiable (Delbourgo, 1989). However, the
estimation methods with the same order of accuracy do not necessarily yield the same level of accuracy
in practice, particularly when applied to coarsely grouped data.
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The parameters of the GQ-LC passing through the three data points can also be
easily obtained from the following simultaneous linear equations:

(12) l l a p l bl p c p l k i i i

e a b

k k k k k k k k1 1 1 12−( ) = −( ) + −( ) + −( ) = − +

= − +

for , , ,

++ +( ) = − = − = −c m b a n be c r n me1 4 2 4 42 2 2, , , .

The derivative at pi is calculated as follows:

(13) L p b mp n mp np egq i
1 2 22 2 4( ) ( ) = − − +( ) + + .

Although neither model necessarily satisfies monotonicity or convexity, and both
of them may take a negative value near the left endpoint as noted in the literature,6

the derivatives of the β-LCs at the data points always satisfy the inequalities in (4)
in our empirical studies. As for the GQ-LC, the problems are not observed when
applied to quintile-grouped data.7

2.3. Estimating the Derivatives of Endpoints

Even in the cases where the derivatives of intermediate points are given, the
derivatives of endpoints typically need to be estimated. In this paper, the left and
right endpoint derivatives d1, dn shall be estimated by the following methods in the
forms of arithmetic, geometric, and harmonic means:

(14)

d d

d d

d d

1 1 2

1 1 2

1 1 2

2

2

1 2 1

= −
( ) = ( ) − ( )

= −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Δ
Δ

Δ

,

log log log ,

,

,

dd d

d d

d d

n n n

n n n

n n n

= −
= ( ) − ( )

= −
( )

− −

− −

− −

2

2

1 2 1

1 1

1 1

1

Δ
Δ
Δ

,

log log log ,

11

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

Hereafter, these methods are called the arithmetic, geometric, and harmonic
means, respectively. When the derivatives of intermediate points are not given,
those derivatives shall first be estimated by the methods in Section 2.2. Then,
the endpoint derivatives shall be estimated. Estimations I and II—presented by
Delbourgo (1989) as arithmetic and harmonic means—are equivalent to the
arithmetic and geometric means, respectively, in (14), when h1 = h2. The geometric

6The β-LC is criticized for this theoretical problem in the literature. Nevertheless, Cheong (2002)
empirically shows that the β-LC is superior overall to other parametric models by using the U.S. income
data of the CPS March Supplement. Our empirical comparisons using income/expenditure data from
seven countries confirm that the β-LC as well as the GQ-LC (which is excluded in the study of Cheong)
is superior to other parametric models, at least in some evaluation measures, for example the estimation
accuracy of the Gini coefficient.

7The derivatives estimated by the procedures using the β-LC and GQ-LC have accuracy of order
O(h2), the same order as those of the methods in (9).
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mean always yields positive values, whereas the arithmetic and harmonic
means may inappropriately yield negative values at the left and right endpoints,
respectively. The harmonic mean may also be infinite. When the harmonic mean
is negative or infinite, or when interpolation is applied to quintile-grouped data,
the following inverse CES (constant elasticity of substitution) mean of order two
shall be employed for the right endpoint’s derivative as an intermediate between
the geometric and harmonic means:

(15) 1 2 11 1d dn n n= −− −Δ .

Hereafter, estimation (15) is called the R-harmonic mean. It is not computable
when the right-hand side is negative; in practice, however, it is always computable
in the empirical studies in Section 5. As for the left endpoint’s derivative, we also
try the method of fixing it to zero. Note that poverty measures are not computable
when the estimates of d1 lie above the ratio of the poverty line to the average
income μ. The zero derivatives have an advantage in this respect.

3. Interpolation of the Lorenz Curve by the Hybrid Method

The estimation methods for endpoint derivatives in Section 2.3 are required to
fit the SDG interpolant to both end intervals. That said, when an income distri-
bution follows a power law, its LC is represented as 1 − C(1 − p)k (C > 0, 0 < k < 1)
around the right endpoint, which is not continuous differentiable at the right
endpoint. Similarly, when the distribution has a Pareto tail on the lower end, the
LC is represented as Cpk(C > 0, 1 < k < 2) around the left endpoint,8 which is not
twice continuous differentiable at the left endpoint. Thus, the SDG interpolation
is expected to be ill-fitting at both end intervals. To make matters worse, inequality
indices such as the Theil index and lower-tail-sensitive poverty indices such as the
Squared Poverty Gap require higher accuracy on the end intervals. To overcome
the limitation of SDG’s accuracy, we consider adapting pieces of curves derived
from parametric models to interpolants for the end intervals. First, the Pareto
interpolation curves (P-ICs) are introduced, as follows:

(16) L p C p C k

L p C p C k

LP L
k

L L

RP R
k

R R

L

R

( ) = > <( )
( ) = − −( ) > < <( )

0 1

1 1 0 0 1

,

,

,

.

Parameters CL and kL of LLP(p) are uniquely determined by the conditions that
the P-IC should pass through (p2, l2) and that its derivative at p2 should equal d2.
Similarly, parameters CR and kR of LRP(p) are uniquely determined by the
conditions that the P-IC should pass through (pn−1, ln−1) and that its derivative

8Several researchers such as Champernowne (1953) observed that actual income distributions
appear to follow the left power law as well as the (right) power law, i.e., the density of incomes at a low
level x is proportional to xκ, where κ > 0. Major parametric models with a good reputation for being
well-fitting to empirical income distributions, such as the Dagum distribution and the Generalized Beta
distribution of the 2nd kind, have the left and right Pareto tails.
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at pn−1 should equal dn−1.9 Note that kL ≥ 2 is possible. Next, the log-normal
interpolation curves (LN-ICs) are introduced:

(17) L p C p C

L p C p

LLN L L L L

RLN R R

( ) = ( ) −( ) > >( )
( ) = − − ( ) −

−

−

Φ Φ

Φ Φ

1

1

0 0

1 1

σ σ

σ

, ,

(( )[ ] > >( )CR R0 0, ,σ

where Φ denotes the CDF of the standard normal distribution. The parameters are
uniquely determined by the same conditions as the P-ICs. Parameters σL and σR

need to be determined by solving the following implicit equations:

(18) d
l

p
p

p

d
l

L

L

n

n

2

2

1
2

1
2

1
2

1

1

1

1

φ
φ σ

σ

φ

Φ
Φ

Φ Φ

Φ

−
−

−

−

−

−

( )( ) = ( ) −( )
( ) −( )

−( )

,

pp
p

pn
n R

n R
−

−
−

−
−

( )( ) = ( ) −( )
− ( ) −( )1

1
1

1
11

φ σ
σ

Φ
Φ Φ

,

where ϕ denotes the probability density function of the standard normal
distribution. With σL and σR thus determined and the conditions that LLLN(p) and
LRLN(p) should pass through (p2, l2) and (pn−1, ln−1), respectively, parameters CL, CR

can be easily obtained from (17). As shown by our empirical studies in Section 5,
more flexible parametric models are desirable for the end interval interpolation. As
for the right-end interval, a piece of the β-LC is considered as an additional
interpolant β-IC.

(19) L p p p pR m R
R R

β
γ δθ( ) = − −( )1 .

To fix parameters θR, γR, δR, it appears natural to add the condition that the β-IC
should pass through (pn−2, ln−2) to the condition that the β-IC should pass through
(pn−1, ln−1) with its derivative equal to dn−1 at pn−1. In this paper, however, because
the β-LC does not necessarily need to pass through (pn−2, ln−2), an “average” over
several intermediate points other than (pn−1, ln−1) is taken, as follows, aiming for a
more stable estimation:

(20) log log log log log

log

l h p l h p h pm k k kk R R k k R k kk k
= −( ) = + + −( )
=
∑ ∑ ∑θ γ δ 1

θθ γ δR R m R mp p+ +log log ,�

where l p l p p p pm k k k
h

m k k
h

m k k
hk k k= ∏ −( ) = ∏ = ∏ −( ), ,� 1 . Summation over k is taken

in the range ∑ <=
−

k l
n

kh m2 in (20) for a given value 0 ≤ m ≤ 1. If hn−2 ≥ m, then (20)
shall be replaced with the condition that the β-LC should pass through (pn−2, ln−2).
For instance, LRβ0(p) is determined by the extra condition that the β-LC should

9The P-ICs can be regarded as generalizations of the LCs of the (left or right) Pareto distribution
by introduction of an additional parameter CL or CR. The P-ICs are identical to the LCs of some
statistical size distributions that follow the Pareto distribution on the respective intervals. The mean of
the size distributions outside the respective intervals contributes to determining CL, CR. The shape of
the size distributions outside the respective intervals does not make any contribution. The same is true
for the LN-ICs.
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pass through (pn−2, ln−2), while LRβ1(p) is determined by the extra condition (20) with
summation over all intermediate points except (pn−1, ln−1). In the case of LRβ0.4(p),
the summation is taken over four points from the 5th through 8th decile points
for decile-grouped data and the 2nd and 3rd quintile points for quintile-grouped
data. The parameters are obtained by solving simultaneous linear equations,
as follows:

(21) γ R
n

n n

m

n

n n

n

mp
p l d

p l
p

l p
=

−
− + −

−
−⎛

⎝⎜
⎞
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− −

−1
1

1 1

1
1

1 1 1

1 1
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p
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−

⎛
⎝⎜

⎞
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δR ≤ 1 is a necessary condition for the convexity of the β-IC on [pn−1, pn(= 1)]. In our
empirical studies in Section 5, δR > 1 occurs in some cases when the intermediate
point derivatives are estimated by the arithmetic or geometric mean. In contrast,
the β-IC always satisfies δR ≤ 1 (as well as monotonicity and convexity) for
0 ≤ m ≤ 1 in the cases when the intermediate point derivatives are available or
estimated by the harmonic mean or β-LC.10

4. Consistent Interpolation of the Concentration Curves for
Income/Expenditure Components by the Delbourgo–Gregory Method

Now, assume that the CDF F(x) for the overall income is strictly increasing;
the amount variable of income component s, denoted as Xs, has a finite expectation
μs (s = 1 . . . K); and its conditional expectation gs(x) = E(Xs|x) is continuous with
respect to an income level x. Then, the concentration curve (CC) for component s
is defined as C p g F ds p

s s( ) = ∫ ( )( )−
0

1 π μ π (Kakwani, 1977).
One of the advantages of polynomial interpolation methods such as the

Hermite interpolation is consistency with the corresponding interpolation of
the CCs for income components. Rational interpolation SDG also shares this
advantage because SDG is a special case of the DG interpolation proposed by

10A flexible interpolant is also desirable for the interpolation on the left end interval. The β-LC
is inappropriate for this purpose because it often fails to satisfy the required conditions on the
lower end. An interpolant based on the parametric model of Ortega et al. (1991), represented as
θ γ δ

R p pR R1 1− −( )⎡⎣ ⎤⎦, does not improve the accuracy, although the interpolant empirically satisfies the
required conditions (note that the parameters need to be allowed to take values outside of the range
specified for the original Ortega model, i.e., θR > 0, δR ≥ 0, 0 < γR ≤ 1. The parameters may even take
negative values. Another Ortega-type interpolant represented as p pR R

R
γ δθ1 1− −( )⎡⎣ ⎤⎦ fails to satisfy

convexity in some cases. Although an exhaustive inquiry is not made, parametric models that impose
strict restrictions on the ranges of parameter values appear to be inappropriate as interpolants, even if
they are assured of satisfying the required conditions for the LC.
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Delbourgo and Gregory (1985a). None of the parametric models exhibit this
property.11 Using the same notation as in Section 2, the DG interpolant on interval
Ii is represented as follows:

(22) Q
l t l h d t l h d l

i
i i i i i i i i iθ θ θ θ θ θ( ) =

−( ) + +( ) −( ) + −( ) −( ) ++ +1 1 13 2
1 1

2
ii

it
+

+ −( ) −( )
1

3

1 3 1
θ

θ θ
,

where 0 ≤ θ = (p − pi)/hi ≤ 1, pi ≤ p ≤ pi+1. Conditions (2) and (4) are not necessar-
ily required for the CC interpolation. The interpolant holds equalities
Qi(θ(pi)) = li, Qi(θ(pi+1)) = li+1, dQ dp di p ii

= , dQ dp di p ii+
= +1 1. Thus, the DG inter-

polation, which applies the interpolant in (22) piecewise, belongs to the C1-class.
An extra parameter ti(>−1) is called the tension parameter. The larger the ti,
the nearer the interpolant is to the linear interpolant. DG is equivalent to
Hermite’s interpolation when ti = 3 whereas it is equivalent to SDG when ti is
set as in (23).

(23) t A B B A A Bi i i i i i i= + + ≥ >( )1 3 0if , .

According to Delbourgo and Gregory (1985a), when di, di+1 ≥ 0, Δi > 0, DG
is increasing on interval Ii if the tension parameter satisfies the following
inequality:

(24) t d di i i i≥ +( )+1 Δ .

Under assumption (4), DG is assured of convexity on Ii if and only if the tension
parameter satisfies the following condition:

(25) t A B B Ai i i i i≥ + { }1 max , .

When the derivative di
s of the CC at data point p l C pi i

s s
i, = ( )( )( ) is available for

i = 1 . . . n, the DG interpolant Q p C pi
s

DG
sθ ( )( ) ( )= , obtained by substituting li

s, di
s

for li, di in (22) with the same tension parameter as that for the overall income,
satisfies the following equality:12

(26) L p w C p w QSDG I s DG
s

Is

K

s i
s

s

K

i i
θ θ θ θ( )( ) = ( )( ) = ( ) ≤ ≤

= =∑ ∑1 1
0 1for ,

where p p pI i ii
θ θ θ( ) = −( ) + +1 1 , ws denotes the money share of component s. DG is

expected to generally be more accurate than the linear interpolation; however,
because the common tension parameter determined by the SDG interpolation
of the LC for overall income needs to be used for all components, the incidence

11The Bernstein polynomial fitted by Ryu and Slottje (1996) to the LC might be exceptional.
The number of parameters, however, appears to be too high if it is regarded as a parametric model.
Furthermore, their empirical study shows that their method yields relatively large errors when applied
to decile-grouped data.

12In practice, we usually know only about a sample estimate of li
s. We do not distinguish the

notation for sample estimates from that for the true value because there appears to be no fear of
confusion.
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of inappropriate cases cannot be eliminated completely. Our empirical studies
in Section 6 indicate that such cases may occur when the empirical CCs to be
interpolated cannot be regarded as smooth due to excessively minute component
classification and/or income class breakdowns. Excessively minute components
should be collapsed before applying the interpolation.

The derivatives of the CCs at the data points are usually unavailable, unlike
those of the LC for overall income. Even if we know the amounts of income
components earned by individuals whose overall incomes correspond to class
boundaries, it is not appropriate to use the amounts relative to the respective
average amount μs as the intermediate point derivatives. Some averages should
be taken around the class boundaries to compute the derivatives, but such
processed data are usually unavailable. Therefore, those derivatives need to be
estimated from grouped data. A two-stage procedure is employed here. First,
a tentative estimate d̂i

s shall be calculated using the arithmetic, geometric, or
harmonic mean formulas in (9) for the intermediate points and (14) for the right
endpoints.13 Next, the tentative estimates shall be adjusted proportionally to
make the final estimates consistent with the derivative of the LC for overall
income, as follows:14

(27) d d d w di
s

i i
s

j i
j

j

K
= ⋅

=∑ˆ ˆ .
1

Regarding the left endpoint, all derivatives including that for overall income
shall be set to zero. Note that the estimated derivatives based on the geometric
or harmonic mean depend on component classification; however, our empirical
studies show that inconsistencies among classifications are sufficiently small. The
arithmetic mean basically yields the classification-free estimates, except for the
cases wherein the exceptional treatment in footnote 13 is applied.

The adjustment in (27) sometimes makes the accuracy slightly worse. Usually,
a specific component such as the wages of the household heads has a dominant
share in the overall income. In such cases, it may be reasonable to use the estimate
for the largest component at the first stage without adjustment and make adjust-
ments among the rest of the components. That said, as a whole, this modification
shows no particular improvement and reduces the accuracy in some cases. For this
reason, modifications to (27) are not taken up in this paper.

The integral of the interpolated CC for component s on interval Ii can be
calculated by the following formula:

13Because the CCs are not necessarily monotonic when the components allow entries of both
positive and negative amounts, particular consideration should be made for the geometric and har-
monic means. In the case that both Δi−1 and Δi are negative, the calculation of d̂i

s shall be the geometric
and harmonic means of the absolute values multiplied by −1, while in the case that Δi−1 has an opposite
sign to Δi, the calculation shall be replaced by the arithmetic mean. Probably in most cases, the
components contain only (or almost only) non-negative values, and the deduction components only
allow entries of non-positive values. As for such components, it may be better that d̂i

s is set to zero when
either Δi−1 or Δi is zero, as illustrated in Section 6.

14The final estimates also have an accuracy of O(h2). Thus, similarly to SDG, the accuracy of the
DG interpolation is in the order of O(h3) under the assumption of fourth continuous differentiability of
the original curve (Delbourgo and Gregory, 1985a).
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Thus, the quasi-Gini coefficient of component s is calculated as 1 2− ∑i i
sS .

5. Empirical Comparisons of Estimation Methods of the Lorenz Curve

5.1. Data

The WIID (UNU-WIDER, 2008) contains quantile-grouped data and the
Gini coefficients for many countries. Both Minoiu and Reddy (2007) and
Shorrocks and Wan (2009), however, have noted that the Gini coefficients esti-
mated from the grouped data in some cases differ inexplicably from those in the
database. Therefore, they used grouped data aggregated from microdata by their
own calculations for their empirical studies. Our empirical studies should also be
conducted using available microdata for the additional reason that the interpola-
tion methods proposed in this paper attain higher accuracy in the cases in which
class boundaries are given (which is not the case for the WIID).

With care to maintain a fairly even spread over the globe, freely downloadable
microdata are chosen from the website of the Living Standards Measurement
Study (LSMS) for Bulgaria, Cote d’Ivoire, China (Hebei and Liaoning Provinces),
Peru, and Timor-Leste. In addition, microdata from the Survey of Italian House-
hold Income and Wealth (SHIW) and the U.S. Survey of Consumer Finances
(SCF) are chosen. For the U.S., SCF data are taken instead of public use data from
the March Current Population Survey (CPS) because of differences in data
anonymization procedures. Public use data from the SCF exclude the top 400
wealthiest people in the Forbes list and sample households owning property larger
than the minimum of the top 400 (cf. Kennickell and Lane, 2007); nonetheless, the
effect of this cutoff appears much smaller in comparison with that of the top-
coding procedure in CPS. As shown in Table 1, the survey years vary among the
seven countries, ranging from 1985 to 2006. Because per capita amounts are used
for the measurement of global economic inequality and poverty (cf. Chen and
Ravallion, 2001; Milanovic, 2002, 2005), size distributions of per capita consump-
tion are used in our empirical comparisons for Cote d’Ivoire, China, Peru, and
Timor-Leste; those of per capita gross income are used for Bulgaria and the U.S.;
those of per capita net disposable income are used for Italy. To make the evalua-
tions stable, a number of subsample sets are generated from the original samples
and used for the comparisons. As for the five LSMS countries, 50 sets of
subsamples are generated by a single-stage cluster sampling with replacement and
aggregated into quintile, decile, and ventile groups. Although the actual sampling
procedures taken for conducting the surveys employed techniques of stratification
and, in some cases, three-stage samplings, a single-stage cluster sampling without
stratification is employed here for simplicity. It can be said that our procedure
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somewhat reflects the actual sampling procedures because the clusters are formed
based on the actual sampling units. The total numbers of the clusters are listed in
Table 1. Since Italian microdata do not contain the sampling unit codes, a simple
random sampling is employed to generate 50 sets of subsamples. U.S. microdata
contain 999 sets of replicate weights for sampling variance estimation and 5 sets
of plausible values of income for imputation variance estimation. Thus, 50 sets of
replicate weights among the 999 sets and the 5 sets of plausible values are used as
250(= 50 · 5) sets of subsamples.15 To be exact, our studies are based on simulation
results rather than empirical evidence; however, because the simulation results are
considered to reflect the actual situations closely, our studies are termed “empiri-
cal” studies in this paper.

5.2. Evaluation Methods

The accuracy of various estimation methods for the LC shall be assessed by
comparing the square root of the mean squared errors (RMSE) of the derived
CDF along with the RMSEs of the derived function related to the poverty gap
over the whole population, over the lowest group or over the lower 60 percent
group (but excluding the lowest group) and the absolute errors of the inequality
indices relative to the respective inequality values (RAE). Three popular indices,
i.e., the Gini index, the Mean Log Deviation, and the Theil index (abbreviated as
Gini, MLD, and Theil, hereafter), are used for the evaluations. Assuming that N
households in a subsample are arranged in ascending order of per capita amount,
the RMSE of the derived CDF is defined as follows:

(29) RMSE m H y p mi i i ii

k

i ii

k
= ( ) −( )

= =∑ ∑ω ω2

1 1
,

where H y L y( ) = ( )( )−: 1 1
μ denotes the derived CDF and ωi denotes the weight

for aggregation assigned to household i in which mi persons are living together.
p m mi j i j j j

N
j j= ∑ ∑≤ =ω ω1 is the cumulative population share up to household i,

and yi is per capita income of household i. H(yi) and pi correspond to the estimated
and empirical poverty rates, respectively, when the poverty line is set to yi. Thus,
the RMSE in (29) indicates the accuracy of the poverty rate estimation. The
RMSE of the derived function related to the poverty gap is defined as follows:

(30) RMSE m PG y pg mi i i ii

k

i ii

k
= ( ) −( )

= =∑ ∑ω ω2

1 1
,

where PG y H y
L H y

y
( ) = ( ) −

( )( )
:

μ
, and pg p

LC p
yi i

i

i

= −
( )
μ

LC p m yi j i j j j( ) = ∑ ∑( ≤ ω

m yj
N

j j j∑ )= ω1 . PG(yi) and pgi correspond to the estimated and empirical poverty
gap, respectively, when the poverty line is set to yi. Thus, the RMSE in (30)
indicates the accuracy of the poverty gap estimation. The summations in the

15The proposed methods are evaluated by averaging results for the respective sets of subsamples.
The number of subsample sets is determined to evaluate the proposed methods without being affected
by specific choices of subsamples within reasonable computational time.
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numerators and denominators in (29) and (30) are taken over the whole
population, over the lowest group, or over the lower 60 percent group (but
excluding the lowest group).

To save space, we mainly present the overall aggregates of the individual
estimation errors, supplementing them with abbreviated notes for the results of
individual countries. The aggregations are taken in the form of the RMSE using
the overall averages and the variations among averages of individual countries, as
follows:

(31) ARMSE
K

ARMSE ARMSE

ARMSE
K

ARMSE ARMSE w

kk

kk k k

( ) +
−

−( )

= =

∑

∑

2 21
1

1

,

, , jj k jj
RMSE , ,2∑

where K denotes the number of countries to be aggregated; RMSEk, j denotes the
RMSE for subsample j of country k calculated by the formulas in (29) or (30);
and weight wk, j is 1/250 for the U.S. and 1/50 for the other countries. Regarding
the inequality indices, because estimation errors tend to be larger along with the
levels of index values, the relative absolute errors (RAE) to the index values are
aggregated in the form of the RMSE, as follows:

(32) ARAE
K

ARAE ARAE

ARAE
K

ARAE ARAE w I

kk

kk k k j k j

2 2

, ,

1
1

,

,+
−

−( )

= = −

∑

∑

1

ˆ̂ ˆ̂I I Ik j kj , ,⋅∑

where I I Ik k j k j, ,, ,
ˆ ˆ̂ denote the inequality index values estimated from the original

sample, subsample j, and interpolation applied to grouped data tabulated from
subsample j of country k. I K Ik

K
k= ∑−

=
1

1 is a simple average of the inequality index
estimates from the original samples over all countries (see Table 1). Multiplying by
I , we intend to make the magnitude of errors intuitively comprehensible. It is also
possible to aggregate the estimation errors in the form of the RMSE for individual
countries, similarly to (29). Because the results are similar to those for ARAE in
(32), they are omitted here to save space.

In Appendix 1, formulas are listed for computing major poverty and
inequality indices from the estimated LC by analytic means. In our empirical
comparisons, we mainly make approximations of the index calculations by gener-
ating discrete distributions from the estimated LC, except for the Gini index.
The approximations are made as follows: taking a sufficiently large number J
(5,000,000 for Timor-Leste and the U.S., 1,000,000 for the other five countries),
the interval [0, 1] shall be evenly divided into J subintervals. Then, the in-
equality indices are approximated using derivatives L(1)(pj) at the midpoints
pj = ( j + 0.5) / J ( j = 1 . . . J) on subintervals. One of the reasons for the approxi-
mation is that some Hybrid interpolations do not allow analytic means. Another
essential reason for the approximation is that the SW-method, our main competi-
tor, requires making approximations by generating discrete distributions. As for
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Theil, the approximations tend to yield estimates that are more or less biased
downward. Thus, we also present the actual estimation errors for estimation
methods that allow for analytic calculations, and we give upper bound estimates
of actual interpolation errors for the Hybrid methods employing the β-IC on the
right-end interval. The estimation methods for the LC generally produce such
accurate estimates of Gini that errors coming from the approximate calculations
are not ignorable for comparisons when the P-IC or β-IC is employed as the
interpolant on the right-end interval. Thus, analytic calculations are made in
principle. Although the LN-IC does not allow analytic calculations, the approxi-
mation errors are sufficiently small because the log-normal distributions have light
tails. Estimates of Gini by the SW-method also appear sufficiently accurate, taking
into consideration that differences between the analytic calculations and the
approximations are sufficiently small among the fitted parametric models to which
the SW-method is applied.

As mentioned briefly in the next subsection, accurate estimation of the coef-
ficient of variation (CV) appears to go beyond the ability of any estimation method
from grouped data. Thus, results for the CV are omitted in most tables.

5.3. Comparisons among the Hermite, SDG, and Hybrid Interpolations

The Hermite interpolation frequently yields ineligible curves as the LCs,
violating monotonicity or convexity particularly on both end intervals. Here, the
most trouble-free Hermite interpolation with the endpoint derivatives estimated
by the geometric mean (the second and fifth formulas in (14)), denoted as g-H-g,
is compared with the corresponding SDG interpolation (g-SDG-g), the more
accurate SDG with a zero derivative at the left endpoint and an estimated deriva-
tive by the harmonic mean at the right endpoint (the bottom formula in (14)),
denoted as z-SDG-h. Because g-H-g yields ineligible curves from all subsamples of
the U.S., the comparisons are made for the other six countries.

The RMSEs of estimates from decile-grouped data are presented in Table 2.
The RMSEs of estimated CDFs (H(y)) and functions related to the poverty gap
(PG(y)) are presented in columns “H” and “PG,” respectively. The Hermite inter-
polation g-H-g is slightly more accurate than the corresponding SDG interpola-
tion g-SDG-g; however, it can be said that both have nearly the same level of
accuracy. When limiting the evaluation to the accuracy of the interpolations on
intermediate intervals, g-SDG-g is just slightly better than g-H-g. As SDG holds
monotonicity and convexity without restrictions, it has wider choices of estimation
methods for both endpoint derivatives. A more appropriate choice, z-SDG-h,
makes SDG superior to g-H-g, except for H(y) and PG(y) at the lowest decile D1.16

The same is true for estimates from quintile-grouped data if replacing z-SDG-h
with z-SDG-rh, which employs the R-harmonic mean in (15) for estimation of
the right endpoint’s derivative. Replacement of the SDG interpolant on both end
intervals by pieces of curves derived from suitable parametric models (P-SDG-
β0.4) further improves accuracy, except for the case of CV. Because P-SDG-β0.4

16Decile groups are denoted as D1, D2, . . . , D10, from the lowest to the highest. Similarly, quintile
groups are denoted as Q1, Q2, . . . , Q5, and ventile groups are denoted as V1, V2, . . . , V20, from the
lowest to the highest.
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yields infinite CVs for Italy and Timor-Leste, the RMSEs over the other four
countries are also presented in Table 2, which reveals that the CV estimates by
P-SDG-β0.4 have very large errors. Other interpolations also generally yield
inaccurate estimates for CV.

In Tables 3a and 3b, the RMSEs over all seven countries are compared for
five types of Hybrid methods and two types of pure SDG methods for decile-/
quintile-grouped data. P-SDG-P corresponds to the interpolation method pro-
posed by Kakwani (1980b), although the SDG interpolant is employed instead
of Hermite’s as the interpolant on intermediate intervals. Among the five types
of Hybrids, LN-SDG-β0.4 and P-SDG-β0.417 show the best performance. When
applied to decile- or ventile-grouped data, P-SDG-β0.4 yields smaller errors than
LN-SDG-β0.4 for MLD and PG(y), and larger errors for H(y) but the differences
are very small except for MLD. Then again, when applied to quintile-grouped
data, LN-SDG-β0.4 yields smaller errors for all measures except for MLD, for
which the differences of the RMSEs are very small.

For individual countries, estimates by LN-SDG-β0.4 are close to those by
P-SDG-β0.4 for every country. P-SDG-β0.4 attains smaller errors in five countries
for MLD when applied to decile-grouped data, whereas LN-SDG-β0.4 attains
smaller errors in five countries for H(y) and PG(y). When applied to quintile-
grouped data, clear differences are not found in terms of the number of countries
for which the smallest errors are attained for MLD, whereas LN-SDG-β0.4 attains
smaller errors in all seven countries for H(y) and PG(y).

5.4. Comparisons among Estimation Methods for Intermediate Points Derivatives

Among the estimation methods for intermediate point derivatives, the β-LC
in (10) and (11), the GQ-LC in (12) and (13), and the arithmetic, geometric, and
harmonic means in (9) are compared for the SDG and Hybrid interpolations. The
Hybrid interpolation employing the P-IC at the left end and β-IC with m = 0.4 at
the right end are denoted by P-SDGβ-β0.4, P-SDGgq-β0.4, P-SDGa-β0.4, P-SDGg-
β0.4 and P-SDGh-β0.4 according to the applied estimation method for the inter-
mediate point derivatives. P-SDG•-β0.4 is used as the general notation for those
methods. The corresponding notation is used for LN-SDG-β0.4, z-SDG-h, etc.
The RMSEs of the estimates from decile- and quintile-grouped data are presented
in Tables 4a and 4b. P-SDG•-β0.4 and LN-SDG•-β0.4 are taken up here because
both types are considered the most appropriate among the various Hybrid
methods for estimation from decile- and quintile-grouped data, respectively, as
shown in the previous subsection.18 The respective smallest RMSEs among the
estimation methods for intermediate point derivatives are in bold in the tables for
the SDG and Hybrid methods.

17When the β-IC is employed at the right end, an appropriate value shall be set as m. The optimal
value of m depends on evaluation measures and minuteness of grouped data as shown in Appendix 2.
It also depends on the countries to be studied. If taking into consideration that the interpolations may
be applied to various grouped data in various countries for different purposes, an intermediate value of
approximately 0.4 appears to be appropriate. It should be noted, however, that too much attention
need not be paid to this issue because the accuracy is generally insensitive to a choice of value for m.

18Although the choice between P-SDG•-β0.4 and LN-SDG•-β0.4 is not easy when interpolating
decile-grouped data, the former is chosen here because of its relatively clear superiority for MLD. The
differences in the other evaluation measures are very small.
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When P-SDG•-β0.4 is applied to decile-grouped data, P-SDGβ-β0.4
attains the smallest errors.19 When LN-SDG•-β0.4 is applied to quintile-grouped
data, LN-SDGgq-β0.4 is superior to LN-SDGβ-β0.4, except for MLD and the
lower part of H(y) and PG(y) (but the differences are relatively small). Both
LN-SDGgq-β0.4 and LN-SDGβ-β0.4 outperform LN-SDGa-β0.4, LN-SDGg-β0.4,
and LN-SDGh-β0.4.

When z-SDG•-h is applied to decile-grouped data, z-SDGβ-h attains the
smallest errors for Gini, Theil, and the overall H(y) and PG(y), whereas z-SDGβ-h
is inferior to z-SDGh-h for MLD, which is sensitive to lower-tail dispersion,
and z-SDGβ-h is also inferior to z-SDGa-h, z-SDGg-h, and z-SDGh-h for H(y) and
PG(y) at the lowest decile D1. Even in the cases where the intermediate point
derivatives are known, the accuracy of H(y) and PG(y) at D1 is worse than that
of z-SDGa-h, z-SDGg-h, and z-SDGh-h. For the applications to quintile-grouped
data, the R-harmonic mean (z-SDG•-rh) gives more accurate estimates than the
harmonic mean (z-SDG•-h) as an estimation method for the right endpoint’s
derivative in the cases in which the intermediate point derivatives are known or
estimated using the GQ-LC or β-LC; however, the converse is true in the cases
of the other estimation methods for the intermediate point derivatives. Results
for z-SDGgq-rh and z-SDGβ-rh are close to each other. Similarly to the results
for z-SDGβ-h applied to decile-grouped data, z-SDGgq-rh and z-SDGβ-rh attains
smaller errors than z-SDGg-h and z-SDGh-h for Gini, Theil, and the overall H(y)
and PG(y), whereas both (and also the SDG interpolation with actual intermediate
point derivatives) are inferior to z-SDGg-h and z-SDGh-h for MLD, H(y) and
PG(y) at the lowest quintile Q1.20

The above results indicate that pure SDG interpolations suffer from poor fit
at the lowest group, even if the intermediate point derivatives are given. For this
reason, an exceptional treatment is introduced for the cases in which the interme-
diate point derivatives are known or estimated by the GQ-LC or β-LC, as follows:
the derivatives at the leftmost intermediate point are replaced with an estimate by
the harmonic mean. The respective procedures, denoted by z-hSDG-h and so on,
succeed in lowering the errors below the level of z-SDGh-h for MLD and to the
same level as z-SDGh-h for the lower-end part of H(y) and PG(y) (see Tables 5a
and 5b). When z-SDG•-h is applied to ventile-grouped data, z-SDG-h and
z-SDGβ-h generally improve the accuracy relative to the other methods, resulting
in the smallest errors for MLD, whereas the accuracy at the lower-end part of H(y)
and PG(y) is still inferior to z-SDGh-h. Thus, the modification of the leftmost
intermediate point’s derivative still has good effects, although the effects are
smaller in comparison with those for decile-grouped data. It should be noted,
however, that the exceptional treatment has a side effect that makes the accuracy
worse at the second-lowest group, i.e., Q2, D2, or V2. The problem of poor fit at
the lowest decile can be visually observed in the upper-left panel of Figure 1, which

19Results for the GQ-LC are not presented because it yields ineligible curves for the LC in some
cases when applied to decile-grouped data.

20Results for the arithmetic mean are omitted because LN-SDGa-β0.4 yields ineligible curves for
the LC in some cases when applied to quintile-grouped data. Results for z-SDGa-h that are omitted
together are inferior to those for z-SDGg-h.
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charts the derivative of the LCs (inverse CDFs) estimated from the interpolations
when applied to decile-grouped data for Cote d’Ivoire.

Looking at the results for individual countries, the β-LC (P-SDGβ-β0.4)
outperforms other estimation methods for the intermediate point derivatives in
most cases (precisely, in all seven countries or six out of the seven countries) when
applied to decile-grouped data. As for the estimation from quintile-grouped data,
LN-SDGgq-β0.4 is superior to LN-SDGβ-β0.4 in most cases for the Gini and the
overall H(y) and PG(y), whereas the superiority/inferiority is not clear for the other
evaluation measures in terms of the number of countries in which smaller errors
are attained. Both LN-SDGgq-β0.4 and LN-SDGβ-β0.4 outperform LN-SDGg-
β0.4 and LN-SDGh-β0.4 in most cases (except for Theil in the case of LN-SDGβ-
β0.4). In comparisons among the pure SDG methods, z-SDGβ-h attains the
smallest errors in a majority of countries for Gini, Theil, and H(y) at the interme-
diate and highest deciles (D2–D10) when applied to decile-grouped data. Clear
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Figure 1. Examples of Derived Inverse CDFs for Per Capita Consumption; Cote d’Ivoire
(Decile Groups)

Review of Income and Wealth, Series 60, Number 2, June 2014

© 2013 International Association for Research in Income and Wealth

372



superiority cannot be observed for PG(y) at D2–D10. As for the estimation from
quintile-grouped data, z-SDGgq-rh is superior to z-SDGβ-rh in all countries for
MLD, the overall PG(y) and the lowest part of H(y) and PG(y). z-SDGgq-rh also
attains smaller errors in five countries for the overall H(y), whereas z-SDGβ-rh
yields better estimates in five and six countries for Gini and Theil, respectively.
z-SDGgq-rh outperforms z-SDGg-h and z-SDGh-h in a majority of countries for
Gini, H(y) and PG(y) at the intermediate and highest quintiles (Q2–Q5).

5.5. Comparisons with Existing Parametric Models and Those Adjusted by the
Shorrocks–Wan Method

At the end of this section, the proposed interpolation methods are compared
with other types of estimation methods for the LC or size distribution of income,
including parametric models and combinations of parametric models with the
SW-adjustment method.

As parametric models of the LC, the β-LC (Kakwani, 1980a), GQ-LC
(Villaseñor and Arnold, 1984, 1989), and Rasche model (Rasche et al., 1980)21 are
used here, as well as the Log-Normal (LN), Singh–Maddala (SM) (Singh and
Maddala, 1976), Dagum (Dagum, 1977), and Generalized Beta of the 2nd kind
model (GB2) (McDonald, 1984) as parametric models of size distributions.

Both β-LC and GQ-LC frequently violate the conditions for the LC due to the
occurrence of negative values near the left endpoint. However, since both models
tend to be more accurate than the complete parametric models in terms of some
evaluation measures such as accuracy of the Gini estimation, the RMSEs of Gini,
H(y) and PG(y) are calculated for comparisons even in the cases that the estimated
LC does not satisfy the conditions. Both models are fitted using simple regression
methods in the same way as POVCAL (Datt, 1998; Chen et al., 2001). Parameter
σ for LN corresponding to the standard deviation of log-transformed incomes is
estimated in the same way as Shorrocks and Wan (2009), as follows:

(33) σ =
−

( ) − ( )( )− −
=

−∑1
2

1 1

2

1

n
p li ii

n
Φ Φ .

Because LN is clearly inferior to other models, direct comparisons regarding
goodness-of-fit are omitted, but the results after making adjustments by the
SW-method are presented. The rest of the models are fitted by the following least
squares method, attaching importance to the accuracy of the LC estimation:

(34) argmin |q qlog log ,p l p L pi i i ii

n
−( ) − − ( )( )[ ]

=

−∑ 2

2

1

where L(pi|θ) denotes the estimated LC when the parameters of the respective
model are set as θ = {θ1, θ2, . . .}. Goodness-of-fit around both endpoints is given

21The Ortega model (Ortega et al., 1991) is omitted here because it is inferior to Rasche in most
of the evaluation measures. Sarabia’s unified model of Rasche and Ortega (Sarabia et al., 1999) is
also excluded because the unified model results in either Rasche or Ortega when applying the fitting
procedure described in this subsection, and the estimates do not show any particular improvement in
accuracy compared with Rasche. The Sarabia model LS(p|δ, γ, β) = pγ [1 − (1 − p)δ]β, where γ ≥ 0, β ≥ 1,
is equivalent to Rasche when γ = 0 and to Ortega when β = 1.
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greater importance in (34). The following simpler method is also conceivable;
however, results are similar in practice:

(35) argmin |q ql L pi ii

n
− ( )( )

=

−∑ 2

2

1
.

The maximum likelihood estimation is not applied because there are frequently
cases in which the parameters are unable to be estimated or are extraordinarily
large, particularly when fitted to GB2. Furthermore, the estimation results are
worse than those of the least squares method. A few inappropriate cases also occur
when GB2 is fitted using (34). In such cases, SM or Dagum is substituted for GB2
according to the goodness-of-fit in terms of the least square errors in (34). In the
GB2 fitting procedure, parameter p, q is regarded as extraordinarily large when
either p or q exceeds log(102) ≒ 4.6, log(106) ≒ 13.8, respectively. Those upper
bounds are determined based on the ranges of the parameter values obtained by
Bandourian et al. (2002) by fitting GB2 to 23 countries. Note that the probability
density function of GB2 in (36) is equivalent to SM’s when p = 1 and to Dagum’s
when q = 1.

(36) GB |2
1

0
1

y a b p q
ay

b B p q y b
a b p q

ap

ap a p q, , ,
,

, , ,, .( ) =
( ) + ( )( )

>
−

+

Shorrocks and Wan (2009) propose to adjust the outcome of the fitted
parametric models by a two-step procedure outlined as follows. First, taking a
sufficiently large integer J, let interval [0,1] be evenly divided into J subintervals
and pj-quantile of the fitted model be computed for each subinterval, where
pj = ( j + 0.5)/J, j = 1 . . . J. The quantiles are grouped piecewise as specified, and
linear transformation is applied to each group, maintaining the order of values.
Then, the adjusted values are regrouped piecewise in a different way, and linear
transformations are applied again to make the averages by income classes identical
to those in the grouped data to be fitted. Shorrocks and Wan recommend J = 1000
because of the small computational burden coupled with practically sufficient
precision, while they mention that higher precision is obtained by taking a larger
J. In this paper, for comparisons with other methods, it is natural to make use
of the subdivisions for the approximate calculation of inequality indices, i.e.,
J = 5,000,000 for Timor-Leste and the U.S. and J = 1,000,000 for the other five
countries.

RMSEs of the various estimation methods are listed in Tables 5a and 5b.
SW-Rasche, SW-GB2, etc., denote estimations by the respective models with
adjustment by the SW-method. When those estimation methods are applied to
decile-grouped data (Table 5a), a Hybrid interpolation P-SDG-β0.4 outperforms
the existing parametric methods and those adjusted by the SW-method even if the
intermediate point derivatives have to be estimated by the β-LC (P-SDGβ-β0.4).
Comparisons with the best among the existing methods reveal that P-SDG-β0.4
attains 15–40 percent smaller errors, and P-SDGβ-β0.4 attains 10–30 percent
smaller errors, except for H(y), for which 1–5 percent smaller errors are attained.
Although pure SDG interpolations z-SDG-h/z-hSDG-h and z-SDGβ-h/z-hSDGβ-h
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yield larger errors for Theil and the lowest part of H(y) and PG(y), they can stand
comparison with the existing estimation methods on the whole. In sharp contrast
to the interpolation methods, the parametric models generally suffer from ill-
fitting at intermediate parts (D2–D9). RMSEs of H(y) are more than two times
larger, and those of PG(y) are more than ten times larger at D2–D9. The
SW-method succeeds in substantially reducing those large RMSEs yielded by the
parametric models at D2–D9 to the levels slightly above those of P-SDGβ-β0.4.
Among the parametric models and those adjusted by the SW-method, SW-GB2
performs the best on the whole. SW-LN is clearly inferior to the other combination
of parametric models with the SW-method, in contrast to the results drawn by
Shorrocks and Wan (2009). The conflicting conclusions might be caused by the
data they used (March CPS) and/or the fitting procedures for parametric models
(which are not specified in their study except for LN), although no definite reasons
are known. The omitted comparison results for ventile-grouped data are similar to
those for decile-grouped data, but one thing to be noted is that SDG improves the
accuracy more substantially than the other methods.

When applied to quintile-grouped data (Table 5b), a Hybrid interpolation
LN-SDG-β0.4 with known intermediate point derivatives outperforms the existing
parametric methods and those adjusted by the SW-method. LN-SDG-β0.4 attains
15–35 percent smaller errors except for MLD, for which SW-GB2 attains approxi-
mately the same level of accuracy. The Hybrid interpolation with the intermediate
point derivatives estimated by the GQ-LC also attains better estimations except
for Gini and the intermediate part of H(y) and PG(y). As for Gini, a parametric
model GQ-LC yields the second smallest errors below those of LN-SDGgq-β0.4.
SW-GB2 yields the second smallest errors for the intermediate part of H(y) and
PG(y) but the differences from those of LN-SDGgq-β0.4 (and z-SDGgq-rh) are
small. Thus, it can be said that LN-SDGgq-β0.4 as well as LN-SDG-β0.4 are more
accurate in comparison with the parametric models and their variants derived by
the SW-adjustment on the whole. The pure SDG interpolations z-SDG•-rh and
z-hSDG•-rh are inferior to others except for the intermediate part of H(y) and
PG(y) when applied to quintile-grouped data. As with applications to decile-
grouped data, SW-GB2 is the best on the whole among the parametric models
and those adjusted by the SW-method. The parametric models cannot avoid
larger RMSEs at the intermediate part of H(y) and PG(y) although the relative
differences from those of the interpolations are smaller compared to the cases of
decile-grouped data.

Comparisons between the Hybrid interpolations and SW-GB2 in individual
countries reveal that P-SDG-β0.4 attains smaller errors in most cases except for
the lowest part of PG(y), for which P-SDG-β0.4 attains smaller errors in five
countries, when applied to decile-grouped data. P-SDGβ-β0.4 also attains smaller
errors than SW-GB2 for MLD, Theil, and Gini in most cases and for every part of
PG(y) in five countries. As for H(y), P-SDGβ-β0.4 attains smaller errors in only
approximately half of the countries. When applied to quintile-grouped data,
LN-SDG-β0.4 attains smaller errors for Gini, every part of H(y), the intermediate
and highest parts of PG(y) in most cases and the lowest part of PG(y) in five
countries. As for MLD and Theil, LN-SDG-β0.4 attains smaller errors in only
approximately half of the countries. Comparisons between LN-SDGgq-β0.4 and
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SW-GB2 reveal that both are approximately equal in terms of the number of
countries for which smaller errors are attained, except for the intermediate and
highest parts of H(y) and PG(y). SW-GB2 has the majority for the intermediate
part of H(y) and PG(y), whereas LN-SDGgq-β0.4 has the majority for the highest
part of H(y) and PG(y). Thus, the clear superiority of LN-SDGgq-β0.4 over
SW-GB2 cannot be observed in terms of the number of the countries gained.

Charts of inverse CDFs derived from the estimated LCs in Figure 1 illustrate
the goodness-of-fit of selected estimation methods when applied to decile-grouped
data for Cote d’Ivoire. GB2 does not fit well at around the 30th percentile, whereas
P-SDG-β0.4 and LN-SDG-β0.4 (with known intermediate point derivatives) fit
well in every part. When intermediate point derivatives are estimated by the β-IC,
the goodness-of-fit of the Hybrid interpolations get worse at around the 30th
percentile but still maintain superiority over GB2. Although the SW-adjustment
improves the goodness-of-fit of GB2 at around the 30th percentile, the superiority
of the Hybrid interpolations cannot be overcome. The inverse CDF estimated
by a pure SDG interpolation z-SDG-h is identical to those of P-SDG-β04 and
LN-SDG-β0.4 at the 10th through the 90th percentile, so it is accurate on the
intermediate interval; however, it suffers from poor fit at below the 10th percentile.
If the leftmost intermediate point’s derivative is replaced with an estimate by the
harmonic mean, the goodness-of-fit of the pure SDG interpolation (z-hSDG-h) is
improved at the lower-end, but the exceptional treatment makes it rather worse at
around the 10th percentile.

6. Empirical Comparisons among Interpolation Methods of the
Concentration Curve

6.1. Data and Evaluation Methods

As shown in Section 5, the SDG interpolation can estimate the LC with
approximately the same accuracy as the existing methods when applied to decile-
grouped or more detailed grouped data, although it is inferior to the Hybrid
interpolation. Its advantage over the Hybrid interpolation and the existing
methods is consistent decomposability into the CCs for income components using
the DG interpolation in (20) as its generalization.

From the sample survey data for the seven countries used in Section 5, we
take 10 sets of income/expenditure data classified according to types of sources/
purchased-items for five countries: for Bulgaria, incomes are classified into 6 and
27 categories and expenditures are classified into 7 categories; for Cote d’Ivoire,
incomes are classified into 10 categories and expenditures into 6 categories;
for Italy, incomes are classified into 4 and 16 categories and expenditures into 3
categories; for Peru, expenditures are classified into 9 categories; for Timor-Leste,
expenditures are classified into 6 categories. Fifty sets of subsamples are generated
from those classified data in the same manner as those in the previous section
and aggregated into decile- and ventile-groups of per capita overall income/
expenditure to which DG is applied. The detailed income categories are subdivi-
sions of the broader categories in the Bulgarian and Italian data. Among the
10 income categories for Cote d’Ivoire, there are two deduction categories:
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“depreciation of farm equipment” and “non-farm capital asset depreciation.”
Among the 16 Italian income categories, there are two deduction categories:
“alimony and gifts paid” and “interest payable.” Some of the categories are
excessively minute; however, the original categories are used here without aggre-
gation because such minutely categorized data illustrate what happens to the
estimated CCs in such cases. Consumption data for China are excluded because of
the small sample size and unclear classification system. Classified income data
from the U.S. SCF are also excluded because of inconsistency with the total
income data.

Assuming that N households in a subsample are arranged in ascending order
of per capita income/expenditure, the accuracy of DG is assessed by the magnitude
of estimation errors of the CCs in terms of the RMSE as follows:

(37) RMSE m C p cc mi i DG
s

i ii

k

i ii

k
= ( ) −( )= =∑ ∑ω ω2

1 1
,
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mi j i j j
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j jm y m= ∑ ∑= =1 1 ). The estimation errors relative to the overall per
capita income/expenditure are also evaluated as follows:
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The measure in (38) (termed the RMSE of the “relative CC,” hereafter) is
introduced as a comparable measure to the RMSE of the poverty gap in (30) in a
loose sense, putting importance on accuracy at lower income levels.

The estimation errors are aggregated over categories and subsamples in the
form of the RMSE, as follows:

(39) ARMSE
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where RMSEk j
s
, denotes the RMSE for component s in a subsample j of classified

data k calculated in (37) or (38); wk j
s

, is a reciprocal of the number of categories
when taking simple averages, or the share of component s in terms of money
when taking weighted averages for the aggregation of RMSEs in (37); as for the
aggregation of RMSEs in (38), wk j

s
, is set to a reciprocal of the number of

categories. When deduction categories exist, the money share of components shall
be replaced with its absolute value.

The accuracy of DG is also assessed by the absolute estimation errors of the
Quasi-Gini indices (Q-Gini) relative to the Gini indices for the overall per capita
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income/expenditure with aggregation over categories and subsamples in the form
of the RMSE, as follows:

(40) ARAE
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where ˆ
,Ik j

s denotes the Q-Gini for component s directly calculated from subsample

j of classified data k; ˆ̂
,Ik j

s denotes the corresponding Q-Gini derived from inter-
polation applied to grouped data aggregated from the respective subsample; and
Ik denotes Gini for the overall per capita income/expenditure distribution in the
respective country directly calculated from the original sample. The reference
value I ( . )= 0 41920 is a simple average of Ik over all ten datasets from five
countries. The weighted averages attach importance to contributions to Gini for
the overall income/expenditure. So far, the only competitor to DG as a consistent
CC estimator is the piecewise linear interpolation method (termed “Linear,”
hereafter) in (41), which belongs to the C0-class.
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The composite Simpson rule (termed “Simpson,” hereafter) in (42) is also regarded
as a kind of piecewise quadratic interpolation method sequentially connecting

three data points p li i
s

2 2,( ), p li i
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polynomials. Simpson enables a consistent CC interpolation and generally gives
better estimates of Gini and Q-Gini in comparison with Linear,22 although it does
not necessarily satisfy monotonicity and convexity of the estimated LC for the
overall income derived from the CC interpolations for components.
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Note that the number of income classes must be even, such as decile- and
ventile-groupings, to apply Simpson.

6.2. Empirical Comparisons among Estimation Methods for Data Points
Derivatives and between DG and Other Interpolation Methods

Table 6 shows the level of interpolation accuracy among ten classified
datasets in terms of the RMSE defined as (37)–(40) when applied to decile-grouped

22The RMSE among seven countries for Gini estimated by the composite Simpson rule is 0.00434
when applied to decile-grouped data. It is worse than those of most of the interpolation methods in
Table 5a, at approximately 0.001 or less, but better than the 0.00744 of the LN model and the 0.01139
of the linear interpolation. The composite Simpson rule is used for the calculation of the Gini index
from decile-grouped data officially tabulated from the National Survey of Family Income and
Expenditures in Japan.
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data. z-SDG-h and z-SDGβ-h are applied for interpolating the LCs of the over-
all per capita income/expenditure. The latter is a choice when the intermediate
point derivatives are not given. In addition, z-hSDG-h and z-hSDGβ-h, the modi-
fied methods with replacement of the leftmost intermediate point’s derivative by an
estimate of the harmonic mean, are applied. The two-stage procedure in Section 4
is employed for the DG interpolation of the CCs for components. At the first stage,
the arithmetic and geometric means are employed for the estimation of interme-
diate point derivatives and the right endpoint’s derivative (see (9) and (14)). DGg

and DGa denote DG with those estimation procedures for the data point deriva-
tives, respectively.23 The left endpoint’s derivative shall be set to zero. Results for
the harmonic mean are omitted because large estimation errors occur frequently.
Because all categories in this study can be regarded as (almost) non-negative or
non-positive, the intermediate point’s derivative shall be set to zero when the slope
is flat on either side of the intermediate point, as explained in Section 4. Note that
subsamples generated by the cluster sampling with replacement from the original
samples appear to make the accuracy of DG worse than the original samples when
the categories have only a small number of non-zero records. This phenomenon
forces DG to lower the accuracy relative to Simpson and Linear in some cases. For
this reason, supplementary notes are given when the comparisons with Linear or
Simpson differ from those based on the original samples.

Comparisons between z-SDG-h and z-hSDG-h as well as between z-SDGβ-h
and z-hSDGβ-h reveal that replacing the leftmost intermediate point’s derivative
with the harmonic mean has only slight effects. Differences between z-•SDG-h and
z-•SDGβ-h are also small. Thus, the common results among the four methods are
described below.

DGg attains the smallest errors for the Q-Gini, CCs, and relative CCs, except
for the weighted-average of the RMSEs of the CCs at the lowest decile, for which
Simpson attains the smallest errors. In contrast to its best performance in terms
of the weighted-average version, Simpson suffers from the worst performance in
terms of the simple-averaged RMSE of the CCs at the lowest decile. On the whole,
DGg outperforms DGa, and both yield more accurate estimates than Simpson and
Linear. DG• maintains its superiority when applied to ventile-grouped data on the
whole; however, some points should be noted: Linear yields smaller RMSEs than
those of DG• at the lowest ventile, but, when applied to the original samples, its
RMSEs are at the same level as those of DG• in terms of the simple-average version
and larger than them in terms of the weighted-average version. Similar to the
application to decile-grouped data, Simpson attains the smallest errors in terms of
the weighted-average version at the lowest ventile, but its RMSEs are slightly
larger than those of DG• when applied to the original samples.

Looking at results for each set of the classified data, DGg attains smaller
errors than those of DGa for the Q-Gini, overall CCs and relative CCs in a
majority of the classified datasets. However, DGg suffers from larger errors than
those of DGa for the lowest part of the CCs and relative CCs in a majority of the

23If the leftmost intermediate point’s derivative is replaced with that of the harmonic mean for the
CC estimation, the accuracy of the estimation at the lowest income class is slightly improved; however,
because the effect is so small, the results are omitted here.
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classified datasets. DG• attains smaller errors than those of Simpson in a majority
of the classified datasets except for the weighted average of the RMSEs of the
CCs and relative CCs at the lowest group (however, Simpson loses the majority
when applied to ventile-grouped data aggregated from the original samples). All
evaluation measures reveal that Linear yields larger errors than those of DG• in a
majority of the classified datasets.

Using broad and detailed income categories for Bulgaria and Italy, the mag-
nitude of inconsistencies between different levels of classification can be verified
for DGg estimates. The discrepancies tend to be larger along with the size of the
respective broader categories, ranging from 10−3–10−5 for the Q-Gini or 10−4–10−5 in
terms of contributions to the overall Gini. Thus, the discrepancies are regarded as
sufficiently small. If priority should be given to independence from component
classification, DGa is an appropriate choice.

Some examples of the CC interpolations are given in Figure 2. The empirical
CC of “net income from self-employment and entrepreneurial income” among the
four Italian income categories (on the bottom right panel) changes its slope so
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Figure 2. Examples of Concentration Curves for Income Components

Note: The concentration curves are multiplied by the respective money shares.
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steeply on the right end that DGg cannot fit the empirical CC perfectly, although
it yields a better estimate compared to DGa and Linear. Like this Italian example,
DGg fits to changes in slope on the right end generally better than DGa, Simpson,
and Linear in many cases. The other three examples in Figure 2 illustrate the
results of interpolating the CCs when the corresponding empirical CCs cannot be
regarded as smooth. The estimated CC of “V14” among the 27 Bulgarian income
categories (on the top left panel) is apparently inappropriate for employing DGg

because the interpolation curve has a hollow on interval [0.9, 1]. DGa also yields
the CC estimate with a smaller hollow area on [0.8, 0.9]. In both cases, the tension
parameter ti in (23) determined by SDG for interpolating the LC of the overall
income does not satisfy the monotonicity condition in (24) on the respective
intervals. The estimated CCs of “V16” from the same data (on the top right panel)
also have hollows on [0.8, 0.9] when DGa and DGg are applied. The latter’s hollow
is much smaller for this category. If the particular treatment is not employed in the
case of a flat slope on either side of the intermediate data points, the CCs estimated
by DGa and DGg are more wildly shaped. The inappropriate interpolations for
“V14” and “V16” (although such problems do not occur when applied to grouped
data directly aggregated from the original data) indicate that care should be taken
to avoid excessively minute classification when employing DG. In those Bulgarian
examples, the appropriateness of the estimated CCs can be examined by checking
monotonicity, whereas the estimated CC of “Arrears” among the 16 Italian
income categories satisfies monotonicity; nevertheless, Linear gives a better
estimate than DGa and DGg. Like the two Bulgarian examples, the empirical
CC of “Arrears” cannot be regarded as smooth.

7. Conclusions

This paper proposes two types of interpolation methods for the Lorenz curve.
Both types preserve monotonicity and convexity essentially without restriction.
One type is the SDG interpolation, the piecewise rational polynomial interpolation
proposed by Stineman (1980) and Delbourgo (1989), and the other is the Hybrid
interpolation, employing pieces of curves derived from parametric models as
interpolants on both end intervals and the SDG interpolant on intermediate
intervals. The pure SDG interpolation has the advantage of consistent decompos-
ability into the CCs for income components. Use of the beta/GQ Lorenz curve is
proposed for estimation of the Lorenz coordinates’ derivatives (or class boundar-
ies) when not given. Empirical comparisons using survey data for seven countries
indicate that SDG attains approximately the same level of accuracy as the existing
methods for inequality index estimation if excluding the upper-tail-sensitive mea-
sures such as the Theil index; moreover, SDG substantially reduces estimation
errors of the LCs at intermediate intervals in comparison with the existing para-
metric models to levels slightly better than those of the Shorrocks–Wan method
(2009) when applied to decile-grouped data or more minute aggregation (even
if class boundaries are unavailable). The Hybrid interpolation attains higher
accuracy than the existing methods even when applied to quintile-grouped data
without class boundaries.
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The proposals in this paper are not simple applications of the rational inter-
polation studied in the field of numerical analysis. The accumulation of research
on parametric models for the LC greatly contributes to the adaptation of the
interpolation technique to LC estimation. In particular, it may be appropriate to
call the proposed methods the model-assisted interpolation methods in the cases
in which the Lorenz coordinates’ derivatives need to be estimated by the β-LC/
GQ-LC. The excellent properties of the SDG interpolation and the enhancement
and/or retention of its accuracy by utilizing the existing parametric models are
expected to be useful for the analysis of economic inequality and poverty under
situations in which access to microdata is still limited.
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