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This paper is a short note on the question of correcting for endogeneity bias in a regression. It also
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1. GENERAL REMARKS

This paper is concerned with the problem of endogeneity bias, i.e. bias due to
the correlation between the explanatory variables and the error term of a regres-
sion equation. It is no secret that the OLS estimator is biased in this case and
the Instrumental Variables technique offers a valid (asymptotic) solution. The
question we ask is whether there is a direct way to calculate the bias of the OLS
estimator and correct for it. Bourguignon, Ferreira, and Menéndez (2007) (abbre-
viated as BFM (2007) hereafter) address this issue in a recent paper in the context
of a study of the contribution of circumstance variables to the earnings inequality
and derive an expression of the bias. We will first consider the question in general
in this section, then discuss the derivation in BFM (2007) in Section 2, and finally
present some simulation results in support of our arguments in Section 3.

We adopt the same notation as BFM (2007) in order to facilitate reference to
the equations of the original paper.

Let us consider a regression equation as follows:!

(D) yv=Xy+u, i=1..,n,

with u, ~ii.d.(0,0>), X; consisting of K variables, and where u; is correlated with
X;. The OLS estimator of yis given by:

Note: The author would like to thank the Editor and an anonymous referee for their valuable
comments which helped to improve the presentation of results.

*Correspondence to: Jaya Krishnakumar, Department of Economics, University of Geneva, 40,
Bd. du Pont d’Arve, CH-1211 Geneva 4, Switzerland (jaya.krishnakumar@unige.ch).

"Note that X; denotes a row vector and not a column one as is usually the case. We have followed
the same notation as BFM (2007).
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) XXX y=y (X X)X,

denoting® the column vector of all the u/’s as u, the column vector of all the y;’s as Y,
and the matrix of all the X/’s as X.
Thus the bias denoted as B can be written as:

A3) B=E(})-y=E(X'X)" X u).

There are two options for going further with the calculation of the above
expectation.
* If X and u were independent, one could conclude that

E((X'X)"'X'u)=E(X'X)" X")E(u)=0.

 If X and u are (possibly) correlated, then one can go through the
conditional expectation method:

4) E(X'X)"X'u)=E[E(X'X)" X"ul X]= E[(X"X)" X"E(ul X)].

However, the expression of the conditional expectation E(u|X') cannot be
derived in general. Normality assumption can provide an answer. Thus, if

we assume that?
X i, 0 2 X Gvcu
~N[| |z=|T Tl v,
u, 0 o.,, O,

and independent for different 7’s, then we can write:

E(u] X;) = O—)’cuz;lXi, = Xiz;lo-x

Hence
E(ulX)=X%o,,

leading to the following expression for the bias

(5) E(X'X)' X'EX)]=E(XX)'X'Xxo,]=2]0,,
The above equation gives us an analytical expression of the bias under
normality.

Finally, we note that one can calculate plim 7 (as n — <o) without the normality

assumption, and under some standard limit assumptions concerning X and ¥ we have:

(6) plimy=y+X o,

’Once again we have deviated from the usual notation of X for the matrix of all observations X,
y for the vector of all observations y; and u for the vector of all errors u;, to align our notation with that
of BFM (2007) as they use X and u to denote a single (generic) observation at some stage.

*We assume, without loss of generality, as done by BFM (2007), that X;’s are centered.
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2. CORRECTION OF BFM (2007)

BFM (2007) analyze the contribution of circumstances to earnings inequality
using a regression of earnings on some circumstance and effort variables. Since
effort can also be influenced by circumstances, they specify additional equations
for effort explained by relevant circumstance variables. In fact three effort vari-
ables are used and hence three effort equations are added. As the omitted variables
of all these equations could possibly be correlated, the four equations form a
simultaneous equation system. Further, the authors note that there is no need to
estimate the structural form for computing the contribution of circumstances
to inequality. It is sufficient to separately estimate the earnings equation and the
reduced form. They also explain how both the direct effect (through the coeffi-
cients of circumstances on earnings) and the indirect effect (through the coeffi-
cients of circumstances on the effort variables which in turn affect earnings) can be
obtained from these two estimations.

The authors strongly suspect that the error term (of the earnings equation) is
likely to be correlated with the explanatory variables, and hence the OLS estimator
will be biased. One solution is given by the instrumental variables technique but
they argue that “an instrumental variable strategy is unlikely to succeed, since it is
difficult to conceive of correlates of the circumstance variables that would not
themselves have any direct influence on earnings.” Thus they go on to calculate the
possible bias of the OLS estimator. The bias is calculated as follows.

The authors write the regression equation in a general notation as:*

(M Inw, = X,y +u,

where “u; need not be orthogonal to the explanatory variables in X;.”
Denoting a single (say the i-th) observation as X and u (without the subscript
i), the authors say that:

(8) B=E(y-y)=(X'X)"E(X"u)
and note that

E(X'u)=(p,0,)0

u

where o, is the standard deviation of u, p., is the vector of correlations between
the x variables and u, oy is the vector of the standard deviations of the x variables,
and (p,0,) is a vector where each correlation is multiplied by the standard

deviation of the corresponding x variable. Combining the last two formulae yields
) B=(X'X)"(p,0.)0,

Next, the authors use

u=u-X(y-v)

“The only change in notation between our equation (1) and equation (7) is that y; is replaced by
Inw;, which is of no consequence for the derivation of the bias.
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to write
wu=an+{y-y)X'X(y-7v),
and
(10) o, =EWu)=EW@+E(7-7)XX([7-7)).

Then they replace (7 —7y) by its expectation B and get:

(11)

0. =6, +B'X'XB.

Substituting the expression of the bias from (9), they finally get

(12)

o, =6, +(p,0.)(X'X)(p,0,)0..

With their notation

(13)

K= (pxuo-x ),(AX,A/)71 (pxuo-x )’

one can write the bias as

(14)

B=(X"X)"(p,0.)5, [(1-K).

There are several incorrect points in the above derivation. Some are notational and
some more substantial. Let us discuss them one by one in detail.

(15)

1. The expectation operator is missing in the specification of the covariance

matrix X in their paper. The correct specification should be that of the
theoretical covariance matrix:
XX X'u
T=E )
uX u

omitting the subscript i (as done by the authors). Absence of the
expectation operator in the above expression in their paper is not merely a
notational error (or a typo) but is also a computational error as many
subsequent expressions have mistakenly interchanged theoretical moments
and empirical counterparts, thus leading to incorrect conclusions. Note
that the last term is simply «? as u is a scalar here.

. Given the correlation between X and u, and the non-linearity of the inverse

operator, it is incorrect to write E[(X’X)" X"u] as (E(X’ X)) E(X u) which is
implicit in result (8). Let us recall that the bias given in our result (5) does
not arise from writing E[(X’X)™' X"u] as a product of (E(X’X))™" and E(X"u)
but from the conditional expectation derivation under normality as shown
in the previous section. Thus there is a substantive element that is ignored
in the result even if we correct the notational error.

Under the normality assumption, we saw earlier that we get the product
¥ 'c,,. As these theoretical parameters are unknown, they have to be
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estimated. This can be done using their sample counterparts and then an
estimation of the bias will be given by

1 )‘1 f
— XX 0.)o
(N pxu X) u

where p,,, 6., 6. denote the estimates of the respective true parameters.
The notation (X’X)™'(p,,0,)0. is not consistent as the first part of the ex-

. . . 1. ..
pression contains an estimate and the second true values, plus N is missing.’

Turning to the substance of the normality condition, it may not be
justified in the empirical context in which many of the x’s are categorical
(or binary) variables (as we need joint normality of both the explained and
explanatory variables). In the non-normality case we cannot derive the
analytical expression of the exact bias.

3. Now we turn to their result reproduced in our (11). Looking at the passage
from (10) to (11), we see that the authors have replaced 7—y by its
expectation B as “a convenient approximation” inside the Expectation
operator. As a result of this approximation, the expectation operator only
applies to X’X in the whole expression. Now, E(X’X) should have been

1o,
replaced by (NX X), i.e. N(X’X)"in our (12). The factor % is once again

missing in the expression (11) and consequently N in (12) (their equations
(13) and (14)).

. 1 . . .
Going beyond the I factor, from a theoretical point of view, the

“convenient approximation” is not justified as one cannot replace a
random variable 4 by its expectation inside an expectation operator such
as E(ACA), especially when A is correlated with C. It is easily seen that
E((7-y)XX7-y)=EWXXX)"'X"u) as 7-y=X'X)"X'u As
such this expectation cannot be analytically calculated when X and u are
correlated.

Even continuing with the authors’ simplification of replacing ¥ —7 by B
(its expectation), one cannot conclude on its under-estimation as that
depends on the nature of the covariance between X’X and (X' X)'X'u
which is what is ignored in this “convenient approximation.” In fact the
authors go on to say that “This underestimation is likely to be small if the
expected bias, B, is estimated with enough precision.” This shows that they
are discussing how far the estimate of B will be away from its true value
and not whether it was legitimate to extract the bias outside the expecta-
tion operator. Taking the case when E(X'u)=0, i.e. E(y—7y)=0, the
authors will get 0 for their approximation (as they will have 0 - X" X - 0)
whereas the true result is E@w'X(X'X)'X'u)= E(trX(X' X)X uu’) =
XX’ X)X’ E(uu’) = o*trPy = Ko? as is well known. Thus we do not get
the right result for the expectation of the product even if we insert the exact

SWe thank the referee for pointing out this additional omission.
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bias inside the expectation. Therefore one can see that the “convenient
approximation” is not valid irrespective of whether the estimate of the bias
B is precise or not.

4. Finally, the first term of (11) is also incorrect as, recalling that u is a scalar,
E@a)=E(@’)#6. In fact this expectation cannot be computed.
Denoting the column vector of all #;’s as 4, it is well known that 4 =M u
where M, =I1-X(X'X)"'X’". Thus E(a't)=E(u'Mu)=E(rrM uu’)
One cannot go further in this exact moment calculation when X and u are
correlated. The same problem remains when taking a single element of the
vector of @’s. Hence E(&°)# 62, 6. can only be an estimator of E(u?) and
that too if # is a valid estimator of u, which it is not in this case as 7 is
biased.

Therefore their expression (13), reproduced in our equation (12), is not correct and
hence their bias given by our equation (14) is not a correct approximation. In what

follows we will see that correcting for the missing % in front of X’ X helps but does

not solve the problem completely especially when p,, is unknown and has to be
given a priori values.

3. SIMULATIONS

This section evaluates the bias given in BFM (2007) comparing it with the
“true” theoretical and finite sample biases through a simulation exercise and finds
that the BFM formula as given in the paper largely underestimates the “true” bias.

If we correct it for the missing factor N then the point estimate of the bias is close

to the small sample and theoretical biases but it assumes that the true value of the
correlation between X and u is known. However, the interval of the bias, which is
what can be calculated in an empirical setting without knowing the true correla-
tion, is always complex.

We present some simulation results to show the magnitude of the difference
between the bias calculated using BFM (2007)’s formula (9), that obtained using
our correct formula (either under normality or in limit) given by (5), and the

. . . . 1 .
corrected version of their formula inserting the factor N which closely resembles

an estimate of our correct formula.

Our first experiment is as follows. The regression equation is a very simple one
given by
(16) yi=XB+u

where X is a scalar. We generate a certain number of observations of X and u from
the bivariate normal distribution

L= %)
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and calculate the corresponding values of y; according to (16). Initially S is set
at 0.7. The variance—covariance parameters of the above normal distribution are
set at 0> =4, o> =1, and 0., = 1.5. This gives a correlation coefficient between
X and u, denoted as p., equal to 0.75. The initial sample size is taken as 50 and
100 samples are generated. For each sample, f3,, is calculated and the following
quantities are computed. .

1. The mean of the 100 B, values.

2. The difference between the above mean and the true value of f, calling it
the finite sample bias.
The expression given by (5), calling it the theoretical bias.

4. The expression given by (9), using the true value of p., the estimated value
of 6., and the value of ¢ obtained using (12), calling it the BFM formula
bias.

5. The expression given by the author-corrected version of (9), using the true
value of p.,, the estimated value of o, and the value of ¢ obtained using
the author-corrected version (12), calling it the BFM reported bias.

6. The BFM “confidence interval” for the bias using (a) p.,=-1 and (b)
P = +1 instead of the true value of p,, in the previous calculation.

After this base simulation, the true values of the parameters are varied to study the
effect on the biases mentioned above. In particular different combinations of o,
and o are explored: (1.5, 1), (1.5, 1), (1, 0.25), (0.5, 0.25), and (0.25, 0.25), giving
the values of 0.75, -0.75, 1, 0.5, and 0.25 for p., respectively (O'i is maintained at
4 for all these cases). Some trials are repeated with the number of observations
increased to 100, 1000, and 10,000, and/or the number of simulations to 200. The
results are reported in Table 1.

Table 1 confirms that, for a known p,,, the theoretical bias, the small sample

hed

bias, and the corrected BFM bias (with the % factor) are all of the same order of

magnitude. The formula given in BFM (2007) gives a very low incorrect bias. In a
real setting where the true value of py, is unknown, BFM (2007) suggest exploring
various values for p,, ranging from —1 to 1 to obtain “confidence intervals.”
Taking these limits, we get the confidence intervals to be entirely complex in all
models with one x. This is not surprising and is due to the fact that when p., = 1 or

when there is

—1, the (corrected) K value is given by (%X X ) G2, which is

. . . 1 .
only one x (assuming o-i is estimated by W(X ’X)). Thus K will always be >1,

implying 1 — K < 0 and hence the two limits of the interval will always be complex.’

As afirst step we decided to gradually narrow down the range of values for p.,
to see the effect on the bias range. Results are in Table 2. The interval for the bias
becomes real for values of |p,,| less than 1 but is rather wide for all ranges of p., and

®We were subsequently informed that the bias reported in BFM (2007) was actually calculated
using the correct version (see next point). Hence we call this one the BFM formula bias as this is what
one would obtain if one were to calculate the bias according to the formula given in their paper.

"In case o~ is estimated by %(X ’X) then K =1 and we will be dividing by 0 and the interval will

become ]—oo, oof.
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TABLE 2
SIMULATION RESULTS: EXPLORING DIFFERENT INTERVALS FOR P,

Model X of Table 1 with one x

Theoretical bias: 0.3750, true py, = 0.7, n = 10,000, nsim = 200

Trials p -1, +1 -0.9,+0.9 -0.8,40.8 -0.7,+0.7 -0.6,+0.6 —0.3,+0.3
Finite sample bias 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747
BFM reported bias 0.3747 0.3747 0.3747 0.3747 0.3747 0.3747
BFM conf. int.* 0 —33.0429i —0.6833 —0.4404 —-0.3246 —0.2482 —-0.1040
BFM conf. int.** 0+ 33.0429i +0.6833 +0.4404 +0.3246 +0.2482 +0.1040
Model VII of Table 1 with one x

Theoretical bias: 0.0625, true py, = 0.25, n = 10,000, nsim = 200
Trials p —-1,+1 -0.9,+0.9 -0.8,40.8 -0.7,+0.7 -0.5,+0.5 -0.3,+0.3
Finite sample bias 0.0625 0.0624 0.0625 0.0626 0.0625 0.0625
BFM reported bias 0.0624 0.0625 0.0625 0.0624 0.0626 0.0625
BFM conf. int.* 0-24.1702i —-0.4998 -0.3228 -0.2369 -0.1399 -0.0761
BFM conf. int.** 0+24.1702i +0.4998 +0.3228 +0.2369 +0.1399 +0.0761

*Lower bound.
**Upper bound.
TABLE 3
SIMULATION RESULTS: GENERATING RANDOM VALUES FOR Py,
Model X of Table 1 with one x

Theoretical bias: 0.3750, true py, = 0.7, n = 10,000, nsim =200
Trials p 1 2 3 4 5 6
BFM lower bound -2.3695 —1.0002 —-1.4910 —1.5456 —2.4868 -3.7873
Corresponding pyy —-0.9903 —0.9495 -0.9762 -0.9778 -0.9912 -0.9962
BFM upper bound 1.5513 1.6388 0.9206 0.17.1995 1.4123 2.6721
Corresponding p., 0.9780 0.9802 0.9412 0.9998 0.9736 0.9924

Model VII of Table 1 with one x

Theoretical bias: 0.0625, true py, = 0.25, n = 10,000, nsim = 200
Trials p 1 2 3 4 5 6
BFM lower bound —-1.9250 —-0.7316 —1.0909 -0.9150 —1.3856 -0.9991
Corresponding p., -0.9922 —0.9495 -0.9762 -0.9667 -0.9850 -0.9991
BFM upper bound 1.6526 1.1995 0.6735 3.7962 1.2019 1.3657
Corresponding py, 0.9894 0.9802 0.9412 0.9979 0.9803 0.9846

includes zero. As a further exercise, we also generated 100 random values of py,
from a uniform distribution [-1, 1] and calculated the BFM reported bias for each
of them. The resulting range for the bias values, excluding the p., values that give
a complex interval, is given in Table 3. For a proper interpretation of these results,
we report different trials that correspond to different sets of 100 random values for
Px- A comparison of the bias ranges obtained with that calculated with the true
value of p,, indicates that the interval is rather large even when it is not complex,

and contains zero.
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TABLE 5
SIMULATION RESULTS: EXPLORING DIFFERENT INTERVALS FOR p,, IN THE TWO x’s CASE

4 1 15
0.3
T=(1 4 1.5 |; theoretical bias: (0 3), n = 1000, nsim = 100
15 15 1 :
Trials p -1, +1 -0.8, +0.8 -0.7,+0.7 -0.3,+0.3
BEM conf. int* (—0.03821’) (—0.1577 - 0.61411') (—0.1899) (—0.0407)
S —0.0382i —0.1549-0.6126i —0.1905 —0.0407
BFM conf. int ** (+0.0382ij (0.1577 + 0.61411') (0.1899) (0.0407)
T +0.0382i 0.1549+0.6126i 0.1905 0.0407
4 1 15 ol
=1 4 1.5 theoretical bias: (O.J’ n = 1000, nsim = 100
15 15 1 :
Trials p -1, +1 -0.8, +0.8 -0.7,+0.7 -0.3,+0.3

BFM conf. int.* (—049191') (—0.9140—1.78771’) (—0.5808) (—0.1235J

—0.4909i -0.9118-1.7280i -0.5803 -0.1234

0.49191‘) (0.9140+1.7877ij (0.5808) (0.1235)

BFM conf. int.** (
0.4909i 0.9118+1.7280i 0.5803 0.1234

*Lower bound.
**Upper bound.

Next, we decided to consider two x’s in the equation to see if the bias range
result obtained in the single x case, where the sign of (1 — K) can be theoretically
derived, is special or extends to a general case (where we cannot get a theoretical
sign for (1 — K)). We conducted another series of simulations with two x variables
with various parameter values and different ranges for the correlation parameters
between the two x’s and u. Results are presented in Tables 4 and 5.

Without commenting on all the results in detail, it can once again be seen that
the bias calculated according to the formula as given in BFM (2007) is far from
the actual bias and heavily underestimated (in absolute terms) whereas the

1 . . . . .
N-corrected version gives values that are close to the theoretical bias. But this is

just one part of the conclusions and not the main one in our opinion as these BFM
biases are calculated using the true value(s) of p., which is(are) never known.

In a setting where the true value(s) of p., is(are) unknown, the “confidence
intervals” suggested by BFM (2007) using the limits —1 and 1 for p., are entirely
complex in all situations. In the two x’s case, the interval remains complex even for
certain values of |py,/| less than 1, up to the range —0.8, 0.8. Narrowing the range
further produces a real interval but still spans a wide range of values for the bias.
The “estimated” bias can be either several times greater the actual bias or many
times lower than than the latter depending on the p value chosen. Some intervals
can even exclude the true bias. Thus the “confidence intervals” do not provide any
useful information on the order of magnitude of the actual bias. This conclusion is
not specific to any particular setting but holds across different settings.
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Thus we can conclude that it is not possible in a general setting to calculate
or approximate the bias of the OLS estimator when the explanatory variables are
correlated with the disturbance term, except when we know the true values of the
covariance parameters (or of the estimated parameters themselves). The method-
ology of calculation of the bias and “confidence intervals” presented by BFM
(2007) is not correct and the results do not provide the correct range of bias of their
OLS estimates. This also casts doubts on their empirical conclusions based on
these estimates.
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