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ASSESSING THE ROBUSTNESS OF COMPOSITE INDICES RANKINGS

by Iñaki Permanyer*

Fulbright Visiting Scholar at Cornell University, Department of City and Regional Planning

Ranking objects in terms of different attributes is a crucial practice that is typically sensitive to the
choice of attributes’ weights. In this paper we present rigorous methods to assess the extent to which the
weight-based rankings are robust to the choice of alternative weights. Empirical illustrations are
provided, showing the robustness of country rankings arising from the values of the UNDP Human
Development Index, the Gender-related Development Index, or the Human Poverty Index among
others. The ideas and techniques presented in this paper can be used to assess the reliability of
multiattribute rankings.
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1. Introduction

The evaluation and posterior ranking of objects by means of multicriteria
comparisons is a pervasive activity in many spheres of human life. To name a few
examples: a list of projects have to be evaluated by different referees to decide which
is best suited to receive economic support; a list of students have to be ranked to
decide which ones deserve a fellowship or to join a certain institution; the social
services of a given community need to evaluate the needs of the poorest individuals
to know who deserves financial aid; a list of countries has to be ranked in terms of
aggregate well-being to decide how to allocate scarce resources; and so on. In all
these examples, the different objects are evaluated and ranked using multiple
criteria. These criteria might include the opinion of different experts or referees,
valuable attributes or characteristics of the objects to be ranked, or both things at
the same time. Finally, these multiple criteria or attributes are usually aggregated to
obtain a summary numerical measure that will be used to rank the different objects.

In practice, it is very common to summarize this multidimensional informa-
tion using the so-called weighted means; that is, when aggregating the values of the
different attributes, a specific weight is given to each of them according to their
relative importance. This is a simple and intuitive way of summarizing information
that allows for the possibility of giving more emphasis to those components of the
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evaluating process that are considered to be more relevant. For example: one
might want to give more weight to the opinion of a renowned and experienced
referee than to a novel one; or one might consider that health is more important
than the number of TVs per inhabitant when evaluating the aggregate well-being
of a list of countries; and so on.

However, the choice of specific weights for alternative attributes or dimen-
sions is an extremely delicate issue. Depending on the context we are dealing with,
there might be important ethical and normative implications in the choice of one
weight or another. As Anand and Sen argue: “Since any choice of weights should
be open to questioning and debating in public discussions, it is crucial that the
judgements that are implicit in such weighting be made as clear and comprehen-
sible as possible and thus be open to public scrutiny” (Anand and Sen, 1997, p. 6).
Due to the importance of this choice, in the literature there is a plethora of
techniques to provide more or less reasonable criteria to obtain the “ideal” weight-
ing scheme. To name some of most well-known: one has data driven techniques
(including, but not limited to, data envelopment analysis (DEA; see Despotis,
2005); frequency based methods (see Desai and Shah, 1998), principal components
analysis, factor analysis, cluster analysis (see Hirschberg et al., 1991), regression
based weights (see Schokkaert, 2007), or normative weighting techniques (public
opinion, expert opinion, or equal weighting; see Chowdhury and Squire, 2006;
Stapleton and Garrod, 2007)). The interested reader can find a survey of weighting
techniques in the OECD’s Handbook on Constructing Composite Indicators (Nardo
et al., 2005).

The most disturbing problem about choosing appropriate weights is that the
ranking of objects can eventually be altered when choosing different weighting
schemes. If this happens, the reliability of the rankings might be put into question
and raise objections or concerns. This is particularly true in the case of interna-
tional country rankings, that have typically attracted the attention of the media,
the academic community, and the different national governments. Confronted
with such a daunting task, if a decision maker is uncertain about the merit or
appropriateness of a specific weighting scheme, she might prefer to allow for a
certain degree of underspecification in the process of choosing weights. In this
paper, we will mainly focus on the country rankings arising from indices like the
Human Development Index (HDI) and other United Nations Development
Program (UNDP) composite indices, but our results are applicable to many other
contexts as well.

Facing the problem of finding weighting schemes that would meet conflicting
ethical/normative imperatives, Sen (1992) proposed an alternative approach con-
sisting of allowing for a certain degree of underspecification for those weights in
which full agreement had not been reached. Foster and Sen (1997, p. 206) state that
while “the possibility of arriving at a unique set of weights is rather unlikely, that
uniqueness is not really necessary to make agreed judgements in many situations.”
For instance: if three decision makers claim that the weight that should be attrib-
uted to the education component of a well-being composite index is 0.2, 0.3, and
0.4, then they all agree that the weight should not fall below 0.2 nor exceed 0.4.
This approach can be very useful when decision-makers are uncertain about the
appropriateness of a given weighting scheme. However, this comes at the cost of
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obtaining partial orders in which certain couples of objects cannot be ranked
vis-à-vis each other. An important limitation of this approach is that nothing is
known about the degree of incompleteness of the partial ranking that arises when
the weights are allowed to move within a given range. Moreover, it is clear that the
larger the decision-maker’s uncertainty and the corresponding degree of weights
underspecification, the smaller the number of couples of objects that can be
robustly ranked vis-à-vis each other. In this context, we contend that it would be
very useful for a decision maker to have tools to measure precisely these trade-offs.
The main purpose of this paper is to provide very precise answers to these relevant
issues by exploring the extent to which the ranking that arises from the choice of
a specific weighting scheme is sensitive (i.e. robust) to small/local variations of its
values. We contend that the tools presented in this paper can be very useful for
policy makers and empirical practitioners to assess the degree of reliability of the
rankings they are dealing with.

In order to explore the extent to which the ranking of objects is robust to the
choice of alternative weighting schemes, many empirical studies have typically
opted for taking a list of different “reasonable” weighting schemes and comparing
the corresponding results. This approach is known in the literature as “sensitivity
analysis” and has been used extensively in empirical studies. However, we contend
that the choice of any of those lists in sensitivity analysis is arbitrary in itself, since
one might argue that there can always be other more or less reasonable criteria that
would suggest inclusion of yet another significant weighting scheme to the list.
Even worse, one might wonder whether the inclusion of other weighting schemes
to the list might dramatically alter the corresponding ranking or not. Hence,
“traditional” sensitivity analysis is an inherently incomplete technique that only
scratches the surface of the problem. In this paper we propose a more holistic
approach in which all possible weighting schemes are taken into account to truly
assess the robustness of a given ranking.

In recent years there have been different contributions in the literature that
have dealt with the issue of sensitivity analysis for composite indices. Saisana et al.
(2005), for instance, have used Monte Carlo simulation techniques to derive prob-
ability distributions of the values of composite indices when some factors that are
necessary for their derivation (weighting schemes, aggregation function, normal-
ization method, selection of subindicators, and so on) are allowed to change. On
the other hand, Cherchye et al. (2008) have studied the robustness of HDI-like
rankings when the weights are allowed to vary in different regions and the aggre-
gation function is allowed to be any S-concave index. Finally, Foster et al. (2009)
follow a similar approach to the one presented in this paper by exploring the extent
to which a ranking is incomplete when the weights are allowed to move in certain
sets of “admissible weights.” However, as we will later see, these sets of admissible
weights and the corresponding robustness measure they derive are somewhat
arbitrarily chosen, and their results are only valid for linear aggregation functions.
In this paper we will discuss in detail the implications of choosing different sets of
admissible weights and derive a robustness function that is valid for any of them.
In particular, this allows us to expand the robustness analysis to the case where
we use any member of the generalized weighted means to aggregate between
dimensions.
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In Section 2, we will start exploring the consequences of taking the whole set
of weighting schemes into account when ranking objects using the ordinary
weighted arithmetic means. In particular, this information will be used to con-
struct the so-called Robustness Function and the Confidence Value associated to a
given weighting scheme, that measure the extent to which the ranking arising from
the choice of that specific weight is sensitive/robust to changes in its original values.
We provide empirical illustrations using the values of the Human Development
Index, the Gender-related Development Index (GDI), and the Gender Empower-
ment Measure (GEM). In Section 3 we extend the ideas presented in the previous
section to the context where the composite index that is used to rank objects is a
generalized weighted mean. Among many other things, this allows one to explore
the level of robustness associated to a given weighting scheme for the country
ranking that arises from the use of other UNDP composite indices, like the Human
Poverty Index. Section 4 is devoted to a critical discussion of the notions and
results presented in the previous sections, together with some concluding remarks.

2. Robust Comparisons

First, let us introduce some general notations that will be used throughout the
paper. We assume that we are ranking n ∈ N objects {C1, . . . ,Cn} (typically
countries) and that for each of these objects we have k ∈ N different attributes (N
is the set of natural numbers). These attributes are measured by quantitative
individual indicators that are later used to rank the objects. For instance, in the
case of the Human Development Index, one has k = 3 attributes, namely: health,
education, and income. We will denote by Iij the value of attribute “j” for object
“i”. The vector Ii* := (Ii1, . . . ,Iik) contains the information of the k attributes for
object i, and is called the achievement vector. Thus, the information used to rank
the n objects is an n ¥ k matrix. If we assume that each attribute contributes in the
same direction to the evaluation of the different objects for the purpose at hand,1

each weight should be non-negative, so the whole set of normalized weighting
schemes for k attributes is

Δk k
k

i
i

k

iw w R w and w i k: ( , . . . , ) | { , . . . , }= ∈ = ≥ ∀ ∈{ }
=
∑1

1

1 0 1(1)

which is the standard (k - 1)-dimensional simplex of the Euclidean space in Rk.
The vertices of the simplex will be denoted by e1 = (1,0, . . . ,0), . . . ,
ek = (0, . . . ,0,1). This will be our weights domain. Moreover, for each i, j ∈
{1, . . . , n}, we will define the following sets

Δ Δk
ij

k k i jw w C is not ranked below C: {( , . . . , ) | }= ∈1(2)

Δ Δk
ji

k k j iw w C is not ranked below C: {( , . . . , ) | }= ∈1(3)

1For example: if we are assessing an individual’s well-being, the different attributes are assumed to
contribute positively to their well-being. If this is not the case, the indicators measuring the correspond-
ing attribute can be appropriately rescaled.
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which will be used to assess the robustness of the ranking between Ci and Cj. In
words: Δk

ij ( Δk
ji) is the set of weighting schemes for which object Ci (Cj) is not

ranked below object Cj (Ci). Now, recall that the definition of these sets will
basically depend on the functional form of the composite index we are using to
collapse the k individual indicators into a single value. In this section, we start
assuming that the function used to aggregate the different attributes/indicators and
rank the corresponding objects is the weighted arithmetic mean mw, with
w = (w1, . . . , wk), where

μw i ik j ij
j

k

I I w I( , . . . , ) : .1
1

=
=

∑(4)

This is a particularly simple and intuitive way of comparing objects that is
used in many circumstances. Consider, among others, the UNDP Human Devel-
opment Index, the Gender-related Development Index, the Gender Empowerment
Measure, or a myriad of other quality-of-life related indices. However, in other
circumstances, it might make more sense to use the generalized weighted means to
compare different objects (take, for instance, the multidimensional well-being,
inequality, or poverty indices that want to be sensitive to the tails of the distribu-
tions; see Foster et al., 2005). In Section 3, we will extend our results to the
generalized weighted means.

Now, using the weighted arithmetic mean mw, it is clear that

Δ Δk
ij

k k w i w jw w I I: {( , . . . , ) | ( ) ( )}= ∈ ≥∗ ∗1 μ μ(5)

Δ Δk
ji

k k w i w jw w I I: {( , . . . , ) | ( ) ( )}.= ∈ ≤∗ ∗1 μ μ(6)

Moreover, one has that Δ Δ Δk k
ij

k
ji= ∪ . In order to determine these two sets

precisely, we need to find Δ Δk
ij

k
ji∩ . Now, if w ∈ ∩Δ Δk

ij
k
ji, one must have that

mw(Ii*) = mw(Ij*) (that is, the objects Ci and Cj have the same score), so it is straight-
forward to check that

Δ Δ Δk
ij

k
ji

k k l il jl
l

k

w w w I I∩ = ∈ − ={ }
=
∑: ( , . . . , ) | ( ) .1

1

0(7)

Hence, Δ Δk
ij

k
ji∩ is a linear hyperplane embedded in Dk, so the sets Δk

ij, Δk
ji are

convex polyhedra of Rk that can be described by giving the list of corresponding
vertices. It is important to point out that the set Δ Δk

ij
k
ji∩ is empty when either Ii*

or Ij* strictly vector-dominates the other2 (in that case, there is no weighting scheme
that could eventually reverse the ranking, so Δk

ij , Δk
ji must be either the empty set

or the whole simplex Dk). In order to simplify the notation, from now on we will
simply write H(i,j) instead of Δ Δk

ij
k
ji∩ .

In some cases, one might be interested in having a graphical representation of
the sets Δk

ij, Δk
ji. Consider the following illustrative example that uses data from the

2We say that (x1, . . . , xk) vector-dominates (y1, . . . , yk) when xi � yi for all 1 � i � k. When xi > yi

for all 1 � i � k, we say that (x1, . . . , xk) strictly vector-dominates (y1, . . . , yk).
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Human Development Index (year 2006). The three components of the HDI for
Sweden are (0.928, 0.974, 0.973), and the corresponding components for Japan are
(0.957, 0.949, 0.962). With the classical equal weighting assumption, Sweden gets
a score of (1/3)(0.928 + 0.974 + 0.973) = 0.958, so it is ranked above Japan, that
gets a score of (1/3)(0.957 + 0.949 + 0.962) = 0.956. However, if one picked
w = (1/2, 1/4, 1/4), Sweden would score 0.951 and Japan 0.956, so the ranking
would be reversed. More generally, we are interested in knowing which is the set of
weights for which Sweden is ranked above Japan and vice versa; they are sche-
matically shown in Figure 1.

The weights for which Sweden (Japan) is ranked above Japan (Sweden) are
the ones at the right (left) hand side of the hyperplane. The equation of the
hyperplane that divides both sets of weights is equal to -0.029w1 + 0.025w2 +
0.011w3 = 0. Similar figures and ideas to the ones discussed in this subsection have
already been proposed in Permanyer (2007) and Foster et al. (2009).

2.1. Rank Robustness for a Couple of Objects

In the previous subsection, we saw that when the achievement vectors Ii*, Ij*

associated to a couple of objects Ci, Cj do not strictly vector-dominate each other,
the sets of weights for which one object is ranked above the other Δk

ij, Δk
ji are

non-empty convex polyhedra separated by a linear hyperplane H(i,j). We intro-
duce now the following intuitive ideas. Suppose that one wants to rank a couple of
objects (Ci,Cj) privileging an initial weighting scheme w = (w1, . . . , wk). If this
weighting scheme is “very close” to the hyperplane H(i,j), then the ranking
between Ci and Cj can be loosely judged as “non-robust,” because a slight variation
in the values of w could lead to a reversal of the ranking. By the same token, if w
happens to be “far away” from H(i,j), the ranking between Ci and Cj can be loosely
judged as “robust,” because small variations in the values of w would not lead to
a ranking reversal. Put in other words: we want to rank couples of objects but
allow the weighting schemes to move within a given “reasonable” admissible set of
weights neighboring w. If the ranking between Ci and Cj is the same for all weights

Figure 1. The Simplex D3 Divided in Two Polyhedrical Regions
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included in a “large” neighborhood of w, then the ranking could be loosely labeled
as “robust.” Analogously, if the ranking between Ci and Cj is reversed by different
weights included in a “small” neighborhood of w, then the ranking would be
“non-robust.”

Given the fact that the choice of weights is such a delicate and controversial
issue on which it is so difficult to reach a universal consensus, it seems legitimate
to wonder what happens with the corresponding rankings when we take into
account not only a specific weighting scheme but also a set of neighboring weights.
In other words, we want to measure the extent to which the ranking ensuing from
the weighting scheme w is sensitive to small/local variations of its values. This way,
we are making room for some underspecification in the aggregation procedure by
allowing the weighting schemes to move within a given range that might be deemed
“reasonable” by different decision-makers who are uncertain about the appropri-
ateness of the initial weighting scheme (see Foster and Sen, 1997, p. 206).

2.1.1. Neighborhood Systems

In order to operationalize the previous intuitive ideas and make them more
precise, we need to introduce some formal definitions.

Definition 1. A Neighborhood System for the simplex Dk is the following
disjoint union:

N Nw:=
∈w kΔ
∪

where each Nw is a set of closed, nested, dense, and bounded neighborhoods of w
(see the Appendix for a more formal definition).

A Neighborhood System is thus a collection of closed neighborhoods for each
weighting scheme w in the simplex, with the different properties representing some
basic intuitions that seem quite unexceptionable to us for the problem at hand.
Basically, each U ∈ Nw represents a set of weighting schemes whose specific
definition might depend on what is meant by “a set of weights around or close to
w.” When a decision maker is uncertain about the appropriateness of a given
weighting scheme w, she might want to consider instead some of its neighborhoods
U ∈ Nw: the larger the uncertainty about a given w, the larger neighborhood she
might want to take into account. In this paper, we will mainly use a neighborhood
system N in which the sets Nw are defined as homothetic contractions of the
simplex Dk toward a given w: it will be referred to as NF as has been used in Foster
et al. (2009).

Having defined a neighborhood system to make room for different degrees of
weights underspecification, the following natural step is to impose some cardinal
structure that allows one to keep track of the pace at which underspecification
increases and the different neighborhoods fill the whole simplex. This is a necessary
step if a decision maker wants to allow for specific degrees of weight underspeci-
fication that can be measured in a ratio scale. For that purpose, we introduce the
following definition.
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Definition 2. For all w ∈ Dk and all U ∈ Nw define j(U) := m(U)/m(Dk), where
m(.) is a standard measure of the size of a set3 in Rk.

By definition, the level of underspecification j(U) associated to any neighbor-
hood U ∈ Nw will be equal to its relative size with respect to Dk. In other words, if
a neighborhood U ∈ Nw contains a proportion “p” of the weights included in the
whole simplex, “p” will be its underspecification level. According to this param-
etrization system, to make an x-fold increase of the underspecification level of a
given neighborhood one has to take a new neighborhood that is x times as large as
the original one. In Figure 2 we show an illustrative example of NF for the case
k = 3 when w = (2/3,1/6,1/6).

2.1.2. Robustness Levels

With the ideas introduced in the previous section it is now possible to present
a formal definition of the robustness of the ranking for a couple of objects Ci, Cj.
Assume that the corresponding achievement vectors Ii*, Ij* do not strictly vector
dominate each other, so that the linear hyperplane H(i,j) is non-empty.

Definition 3. Fix any initial/privileged weighting scheme w ∈ Dk. The robust-
ness level of the ranking between Ci, Cj is defined as j(U), where U is the smallest
neighborhood belonging to Nw having non-empty intersection with H(i,j). This
robustness level will be denoted as r.

The intuition behind this measure is the following. Consider the set of enlarg-
ing neighborhoods around w (Nw). When they become gradually large, one of

3Hence, m(.) measures standard lengths, areas, and volumes in one, two, and three dimensional
spaces, respectively. A more rigorous definition of the size function is given by m U dx dxU kRk

( ) = ∫ 1 1 … ,

where 1U : Rk → {0,1} is the indicator function defined for all (x1, . . . , xk) in the k-dimensional
Euclidean space Rk that takes a value of 1 if (x1, . . . , xk) belongs to U and 0 otherwise.

Figure 2. Neighborhood System NF for w = (2/3,1/6,1/6)
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them, say U, eventually intersects H(i,j). The robustness level r simply measures
the relative size of this neighborhood with respect to the whole simplex Dk. This
way, the number r informs the decision-maker about the relative size of the
maximal set of weights in the neighborhood system Nw that does not reverse the
ranking between Ci and Cj. With this definition, we are capturing in a direct way
the intuitions about robustness introduced at the beginning of Section 2.1.
Another way of motivating the new robustness measure is the following: if each
weighting scheme in the simplex is interpreted as a value judgment about the
importance of the different k dimensions vis-à-vis each other, then r can be
interpreted as a consensus degree measure indicating the extent to which the
ranking between Ci and Cj is supported not only by the original value judgment
represented by w but also by its neighboring value judgments represented in
U ∈ Nw.

In Foster et al. (2009), the authors propose another robustness measure4

denoted by r*. There are differences between the two approaches; among the most
relevant ones are that: (1) r* has only been defined for a specific neighborhood
system N = NF; and (2) r* is not well defined when the aggregation function is not
linear. More details will be given in Section 3.

2.2. The Robustness Function and the Confidence Value

In the previous subsections, we focused on the robustness of the ranking
between a single couple of objects: Ci and Cj. Now, we turn our attention to the
entire collection of comparisons that can be made between the n objects
{C1, . . . ,Cn}. In this case, we want to assess the extent to which the whole ranking
associated to w is sensitive (i.e. robust) to small changes in the values of the initial
weighting scheme. To start with, we will define the set of all hyperplanes crossing
Dk.

H : { ( , ) , { , . . . , }}.= ∀ ∈H i j i j n1(8)

Recall that whenever the achievement vectors Ii*, Ij* strictly vector-dominate
each other, the corresponding H(i,j) is empty, so the number of hyperplanes
crossing Dk is equal to the number of couples of achievement vectors (Ii*, Ij*) for
which there is no strict vector dominance. This number will be denoted by |H|. If
we carry out the analysis of the previous subsection for each couple of compari-
sons that is not completely robust in our dataset, we obtain a complete list of |H|
robustness levels; it will be written as {r1, . . . , r|H|}.

With all this information at hand, we can now introduce the following
definition.

4Using the notation in Foster et al. (2009), r* is defined as r* := D0/(D0 + Dm). Using the notation of
this paper, r* can be rewritten as

r
I I

I I I I
w i w j

w i w j w w j w i
k

* =
( ) − ( )

( ) − ( ) + ( ) − ( )
∈

μ μ
μ μ μ μ

* *

* * * *max ,
Δ

0[[ ].
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Definition 4. The Robustness Function associated to a weighting scheme w ∈ Dk

is a function that for any r ∈ [0,1] takes the value

R r
r

n nw
i H i( ) :

{ { , . . . , } | }
( )

.| |=
∈ ≤

−( )
ρ ρ ρ ρ1

1
2

(9)

For a given value r ∈ [0,1], the Robustness Function associated to w is
counting the share of the n(n - 1)/2 comparisons whose robustness levels are at
most r. Put in other words: the value of Rw(r) is the share of the n(n - 1)/2
comparisons that can not be ranked unambiguously when the set of admissible
weights is the neighborhood U ∈ Nw with underspecification level j(U) = r.

Definition 5. Consider an alternative weighting scheme v � w and a number
r+ ∈ [0,1]. We say that the ranking associated to w is more robust up to level r+ than
the ranking associated to v if and only if Rw(r) � Rv(r) for all r ∈ [0, r+].

In words, for all levels of robustness between 0 and a given r+, the share of
comparisons that exhibit at most a r-level of robustness is always lower for the
ranking associated to w. The number r+ can be interpreted as the range of under-
specification of the original weighting scheme that one wants to allow for the case
at hand. Clearly, the criterion just presented can also be used when we want to
compare robustness functions coming from different datasets (even if the initially
privileged weights w, v are the same). Recall that this criterion to order the
rankings associated to different weighting schemes in terms of robustness is incom-
plete, because the condition Rw(r) � Rv(r) or Rv(r) � Rw(r) might not hold for all
r ∈ [0, r+]. In those cases, the ranking between w and v in terms of robustness
remains ambiguous, so other criteria might be necessary to chose between them. A
simple and complete criterion to compare the robustness levels of different rank-
ings is given in the following definition.

Definition 6. The Confidence Value of the ranking associated to w is defined as

C R r drw w: .= − ( )∫1
0

1

(10)

This is the area above the robustness function within the unit square. By
definition, the confidence value Cw associated to a ranking is a number between 0
and 1 that should be interpreted as a measure of the extent to which the ranking
arising from w is reliable or not in terms of its sensitivity to the changes in the

values of w. Recall that the area above the robustness function, 1
0

1

− ( )∫R r drw , can

take values between 0 and 1. When the values of Cw are small (near 0), the values
of the robustness function Rw(r) are very large, so the ranking arising from w can
not be trusted very much because slight changes in the values of w lead to large
changes in the corresponding ranking. On the other hand, if the values of Cw are
big (near 1), the values of the robustness function Rw(r) are very small, so the
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ranking arising from w is highly reliable because the changes in the values of w do
not lead to large changes in the corresponding rankings. The confidence value Cw

can only be equal to the maximal level of 1 when Rw(r) = 0 for all r ∈ [0,1]—that is,
when there is strict vector dominance between all couples of achievement vectors
and no weighing scheme can change any ranking. Clearly, if one has that
Rw(r) � Rv(r) for all r ∈ 0, 1], then Cw � Cv. However, the opposite is not neces-
sarily true.5

At this point, we will briefly comment on some basic properties satisfied by
Rw(r) and Cw.

Anonymity: Our measures do not depend on the labels of the objects
{C1, . . . ,Cn} and each of them has the same importance. This precludes other
criteria that might give more preponderance to certain objects (e.g. like prioritizing
countries with larger populations).

Common-slope affine transformation invariance: If all scores in all achieve-
ment vectors Ii* are scaled up or down by some positive constant or if the same
constant is added up to all scores in all achievement vectors Ii*, the values of Rw(r)
and Cw remain unaffected. In this framework, ratio scaling and weighing are
formally equivalent and indistinguishable procedures.

Responsiveness: If some H(i,j) ∈ H is/are relocated further away from w
(by modifying the corresponding achievement vectors), then the modified robust-
ness function will take lower values and the modified confidence value will be higher.

Illustrative Examples

In order to illustrate the previous ideas, we show some examples of robustness
functions and confidence values using data from the Human Development Index,
the Gender-related Development Index, and the Gender Empowerment Measure
(all obtained from the UNDP Human Development Report 2006). The HDI uses
the same weight for the three components (health, measured by life expectancy;
education, measured by literacy and gross enrolment rates; and income, measured
by the per capita Gross Domestic Product) to rank 179 countries all over the
world. The GDI measures achievement in the same basic capabilities as the HDI
does, but takes note of inequality in achievement between women and men. In
other words: it is simply the HDI discounted, or adjusted downwards, for gender
inequality. The GDI uses the same weighting scheme for the same three HDI
components to rank 140 different countries. The GEM is a measure of agency. It
evaluates progress in advancing women’s standing in political and economic
forums. It examines the extent to which women and men are able to actively
participate in economic and political life and take part in decision-making. The
GEM has three components that are weighted equally: the political participation
and decision-making component (measured with the female and male shares of
parliamentary seats), the economic participation and decision-making component
(measured with female and male shares of positions as legislators, senior officials,

5Recall that these criteria of comparing the relative position of the robustness functions curves or
the area under these curves is reminiscent of the well-known criteria to rank income distributions in
terms of inequality by comparing the relative positions of the corresponding Lorenz curves or the value
of the corresponding Gini indices.
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and managers, and shares of professional and technical positions) and the power
over economic resources component (measured with the female and male esti-
mated earned income). The necessary data to compute the GEM is available for
107 countries. In Figure 3 we show the graphs of the corresponding robustness
functions associated to the weighting scheme w = (1/3,1/3,1/3) using the robustness
measure proposed in this paper.

The shapes of the curves are very similar in the cases of the HDI and GDI. This
is not surprising for at least two reasons. First, both indices are based on the same
three components and measured using exactly the same variables. Second, the
difference between the HDI and GDI is only due to the existing gender gaps in
the corresponding dimension. However, as shown by Bardhan and Klasen (1999),
the penalty imposed for the existing gender gaps using the GDI method is relatively
small (the GDI values being on average only 9 percent smaller than their HDI
counterparts), so the values of both composite indices are highly correlated. When
r approaches its maximum value of 1, the robustness functions for the HDI and GDI
approach the values of 0.3 and 0.276: this means that the percentage of comparisons
that are not completely robust are 30 and 27.6 percent, respectively. The shape of
both curves is very similar: they are concave from r = 0 to r ª 0.4 and then they are
roughly linear. Moreover, it can be shown that the robustness function associated to
the GDI is not always smaller than the robustness function associated to the HDI,
so the ranking associated to the GDI can not be judged as being more robust than
the HDI ranking according to Definition 5. The confidence values for the HDI and
GDI rankings are 0.81 and 0.82, respectively (out of a maximum of 1), so the GDI
ranking can be considered to be (slightly) more robust according to Definition 6.

On the other hand, the shape of the robustness function associated to the
GEM is very different. To start with, the percentage of comparisons that are not
completely robust is much larger: 56.3 percent. Moreover, it is clear from the graph

Figure 3. Robustness Functions Using r for the HDI, GDI, and GEM Rankings

Source: Author’s calculations using UNDP data (2006).
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that the robustness function associated to the GEM is always larger than the HDI
and GDI counterparts. This means that the ranking associated to the GEM is less
robust than the HDI and GDI rankings (according to Definition 5) for all admis-
sible values of r. The confidence value for the GEM ranking is equal to 0.62. The
fact that the GEM uses a set of completely different variables that are not so highly
correlated between them (as in the cases of the GDI and HDI) might be an
explanation for this noticeably different behavior. In Section 4 we will discuss these
and other related issues in more detail.

3. Extensions for the Generalized Weighted Means

An important criticism directed against the HDI is the perfect substitutability
between alternative dimensions. This way, it is possible to compensate a unit loss
of health with a unit gain of education, and so on. More generally, if one uses the
arithmetic weighted mean mw, the degree of substitution between a couple of
dimensions is always the same irrespective of the corresponding levels of achieve-
ment. This means that a gain or a loss of a unit in a given dimension will have the
same overall effect on the aggregate value of the index, no matter whether the
achievement level in that specific dimension is high or low. Clearly, there are many
circumstances in which this is a non-realistic and non-desirable property: for
instance, a gain of one year of life expectancy is much more important in a country
with a life expectancy of 35 than in one with a life expectancy of 80, and so on. One
simple way of eliminating this unrealistic assumption is by adopting the general-
ized weighted means μα

w . The vast literature on multidimensional well-being,
poverty, or inequality measurement provides many examples that illustrate the
usefulness of this kind of measures (see, for instance, Foster et al., 2005). They are
defined as follows:
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Parameter a indicates the extent to which μα
w emphasizes the upper or the

lower ends of the distribution (Ii1, . . . , Iik). When a = 1, we have the classical
weighted arithmetic mean. When a = 0 we have the geometric mean, while a = -1
yields the harmonic mean. As a approaches (minus) infinity, μα

w tends to the
maximum (Rawlsian minimum) of the distribution (Ii1, . . . , Iik).

The purpose of this section is to extend the robustness analysis introduced in
the previous section to those contexts in which the generalized weighted means are
used to average the different achievement vectors Ii* and rank the n objects.

As before, we want to assess the robustness of the ranking between objects Ci

and Cj (with achievement vectors Ii*,Ij*) by means of the corresponding Δk
ij, Δk

ji and
Δ Δk

ij
k
ji∩ . Now, it is clear that

Δ Δk
ij

k k w i w jw w I I: {( , . . . , ) | ( ) ( )}= ∈ ≥∗ ∗1 μ μα α(12)
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On the other hand, if w ∈ ∩Δ Δk
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In both cases, as one can see in (14) and (15), H i j k
ij

k
ji,( ) = ∩Δ Δ is a linear

hyperplane, so Δk
ij, Δk

ji are convex polyhedra as in the previous section. Hence, the
concept of robustness level for a couple of objects Ci and Cj introduced in Defini-
tions 3 and 4 can also be applied in this context. Analogously, the definitions of
Robustness Function Rw(r) associated to a weighting scheme w and of Confidence
Value Cw apply as well. The only difference in this context is that the equations of
the hyperplanes included in H are now given by (14) and (15).

Illustrative Examples

The previous ideas will now be illustrated with the robustness functions
for a couple of empirical examples. The first one uses data from the Human
Poverty Index (HPI), which is another well-known index published yearly in the
Human Development Reports. In this example, we will focus specifically on
the HPI-I (HPI from now on), which is a deprivation index defined for the
context of developing countries (one has also the HPI-II, which has been defined
for the context of highly developed societies: see the Human Development
Reports for more details). The HPI concentrates on the deprivation in the
three essential elements of human life already reflected in the HDI: longevity,
knowledge, and a decent standard of living. The first component is measured
with the probability at birth of not surviving to the age 40 (P1), the second with
the adult illiteracy rate (P2), and the third is measured as the average of the
percentage of the population not using an improved water source and the per-
centage of children under weight-for-age (P3). The formula of the HPI is given
by

HPI P P P: .= + +( )( )1
3 1 2 3

1
α α α

α

(16)
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For practical purposes, and in order to give more importance to the dimen-
sion where the level of deprivation is higher, the value of a chosen by UNDP is 3.
Clearly, this is an example of a generalized mean with a = 3.

The second index for which we will compute a robustness function is less
well-known but is related in spirit to the indices published in the Human Devel-
opment Reports. It is called Gender Relative Status (GRS) and it measures the
average gender gap for the same well-being dimensions included in the definition
of the HDI disaggregated by sex. It is defined as

GRS
x
y

x
y
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where xi, yi for i = 1,2,3 are the average achievement levels for women and men in
the same three dimensions included in the HDI. This is an example of a generalized
mean with a = 0. The GRS has been defined as an alternative to the GDI in order
to measure the average levels of gender inequality.6 In Figure 4 we show the
robustness functions using r for the HPI and GRS indices privileging the initial
weighting scheme w = (1/3,1/3,1/3) together with the functions shown in Figure 3
to make comparisons easier.

The robustness function for the HPI is similar to the HDI and GDI robust-
ness functions when the values of r are under 0.6; they are concave. For the values
of r between 0.6 and 1, the function is convex and increases more rapidly than its

6It should be pointed out that the GDI is not measuring gender inequality in itself. It is rather
measuring the overall development levels in a given country and correcting them downwards by the
existing levels of gender inequality.

Figure 4. Robustness Functions Using r for the GEM, HDI, GDI, HPI, and GRS Rankings

Source: Author’s calculations using UNDP data (2006).
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counterparts. When r reaches its maximum value of 1, the robustness function
approaches the value of 0.35. This means that 35 percent of all possible country
comparisons by means of the HPI could be reversed if one were allowed to move
the admissible weighting schemes within the whole simplex. This is a similar value
to the ones obtained for the HDI and GDI (30 and 27.6 percent, respectively). The
confidence value of the HPI ranking is equal to 0.78 (out of a maximum of 1).

On the other hand, the robustness function for GRS takes much higher values
than the first three functions for all values of r. It is roughly similar to the GEM
robustness function, crossing it a couple of times. It is concave for all r below 0.5
and convex from 0.5 onwards. When r reaches its maximum threshold of 1, the
value of Rw(r) approaches 0.62, so 62 percent of all possible country comparisons
are not completely robust. The confidence value of the GRS ranking is equal to
0.6.

4. Discussion and Concluding Remarks

In this section we will critically discuss different topics related to the meaning
and relevance of the results obtained so far. We will start by comparing the shapes
of the different robustness functions associated to the different indices. In order to
distinguish between them we will write Rw,HDI, Rw,GDI, Rw,GEM, Rw,HPI, and Rw,GRS.
Looking at Figure 4, we can roughly distinguish two groups of functions on the
grounds of their similarity: on the one hand we have Rw,HDI, Rw,GDI, Rw,HPI, and on
the other hand we have Rw,GEM, Rw,GRS. The first group is characterized by the
relatively low values of the functions for all robustness levels (r): roughly speaking,
around two thirds of all possible comparisons between couples of countries are
fully robust (that is, they do not depend at all on the privileged weighting scheme).
This means that these rankings are fairly stable and not very sensitive to the choice
of alternative weighting schemes. The confidence values of these rankings are
around 0.8 out of a maximum of 1. Within the group, all three curves cross
between them, so none of the rankings can be judged as being the most robust
according to Definition 5. On the other hand, according to Definition 6, the most
robust ranking is the one associated to the GDI, followed by the HDI and then by
the HPI. The second group is characterized by relatively high values of the func-
tions for all robustness levels (r): roughly speaking, around two thirds of all
possible comparisons between couples of countries are not fully robust (that is,
they could be reversed by choosing alternative weighting schemes). This means
that these ranking are not very stable, so they can be altered substantially by
privileging alternative weighting schemes. The confidence values of these rankings
are slightly above 0.6. Within the group, both curves cross a couple of times, so
none of the rankings can be judged as being the most robust according to Defini-
tion 5. On the other hand, according to Definition 6, the least robust ranking is the
one associated to GRS.

The fact that the robustness functions for the HDI and GDI are so similar has
already been discussed in the empirical example of Section 2.2: both indices
roughly measure the same concept using the same variables, the latter being only
slightly corrected by the existing gender gaps. Now, one might wonder about the
similarity between Rw,HDI, Rw,GDI, and Rw,HPI. One preliminary explanation for this
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similarity might be the fact that the strong correlation structure between the
variables within the HPI mimic roughly the strong correlation structure for the
variables included in the HDI (the correlation structure between the HDI variables
has been discussed in McGillivray (1991, p. 1462), and its importance for deter-
mining robustness levels has been emphasized in Foster et al. (2009, p. 16)). This is
due to the fact that the dimensions included in both indices are the same and that,
as a matter of fact, the variables included in the HPI can be seen as the mirror
images of their counterparts in the HDI. The latter uses the life expectancy at birth
while the former uses the probability of not surviving to the age of 40; the latter
uses the adult literacy rate while the former uses the adult illiteracy rate; and the
latter uses the GDP per capita while the former uses the percentage of the popu-
lation not using an improved water source and the percentage of children under
weight-for-age.

Interestingly, the gender related indices GEM and GRS have very different
robustness functions that take much lower values for all possible r. Recall that the
fact that the GEM uses a set of completely different variables with respect to the
HDI, GDI, and HPI does not explain in itself this discrepancy between the respec-
tive robustness functions; one might have very different composite indices (regard-
ing the theoretical groundings, the dimensions and variables included, and so on)
but with very similar robustness functions. As a matter of fact, there is a great
discrepancy between Rw,GRS and Rw,HDI, Rw,GDI, even if the GRS uses in its definition
exactly the same basic variables as the HDI and GDI (life expectancy, literacy
rates, and GDP per capita). However, it should be pointed out that while the HDI
and GDI are indices that measure overall achievement levels (they can be seen as
efficiency indicators), the GRS focuses on the relative attainment between women
and men irrespective of the overall achievement levels (so it can be seen as an
equality indicator). The large values of Rw,GRS mean that there are a lot of countries
for which the gender gaps in the well-being dimensions included in the HDI run in
opposite directions—that is, they sometimes favor men and sometimes favor
women.7

Regarding the shape of the different curves, one can see that they can be
piece-wise linear, convex, or concave. By construction, there is no a priori restric-
tion on the shape of the robustness functions: the specific curvature depends on
the pace at which the expanding neighborhoods of N intersect the different
hyperplanes in H. While this completely explains the robustness of a given
ranking, it is a somewhat mechanical explanation that might not be very appeal-
ing, so it might be interesting to investigate further about other determinants of
robustness.

Determinants and Desirability of Robustness

The issue of finding the determinants of robustness has been explored to a
large extent in Foster et al. (2009, section V). There, the authors discuss the
importance of correlation or positive association between dimensions and some
data transformations preserving or altering the levels of robustness. There might

7Very often, the gender gap in life expectancy favors women while the gender gap in the earned
income component favors men.
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be other determinants that would be interesting to explore. Consider, for example,
the number of dimensions that are included in the composite index. It seems clear
that, other things being equal, the larger the number of dimensions, the more
difficult it is for strict vector dominance to occur, so the lower the level of robust-
ness. Related to this point, one might wonder whether the comparison between
achievement vectors (Ii1, . . . , Iik) and (Ij1, . . . , Ijk) should always yield the same
robustness levels as the comparison between the corresponding d-replicated
vectors (Ii1, . . . , Ii1, . . . , Iik, . . . , Iik) and (Ij1, . . . , Ij1, . . . , Ijk, . . . , Ijk). On this
issue, we argue that this is not a clearly unexceptionable property one would
definitely like a robustness measure to satisfy. After all, when moving from the
k-dimensional space to the replicated kd-dimensional space, the ingredients that
are needed to compute the corresponding robustness levels might suffer important
modifications that could eventually yield different results (consider, for example,
the differences in geometric structure of the simplices Dk, Ddk, or in the neighbor-
hood systems N that are chosen in each space, or the different initial weighting
schemes that are privileged and their relative position with respect to the corre-
sponding H(i,j)).

Another possible determinant one might be tempted to explore is the number
of observations in our dataset (n). A priori, there seems to be no clear relationship
between n and Rw(r) or Cw. However, the sample of five empirical examples
presented in this paper is too small to explore these relationships in a meaningful
way. More generally, it would be interesting to perform some Monte Carlo simu-
lation experiments to explore further the possible relationships between certain
factors of interest and the levels of robustness. This line of research could be
attempted in another paper.

Even if it has not been explicitly acknowledged, until now we have implicitly
taken for granted that robustness is a normatively desirable property that a com-
posite index should contain. Robust rankings are considered to be reliable and
trustworthy, whereas non-robust rankings are considered unstable and unreli-
able, and might be put into question by rising objections or concerns about the
chosen methodology. However, as discussed in McGillivray (1991), McGillivray
and White (1993), and Foster et al. (2009), a high level of robustness for a com-
posite index is equivalent to a large redundancy of its components. These papers
rightly argue that in certain circumstances it makes little sense to combine a list
of highly correlated indices if any of them basically provides the same ranking as
their composite. Hence, we face an apparent paradox in which robustness can be
seen simultaneously as a desirable and an undesirable property. Is there a way of
getting rid of this uncomfortable contradiction and propose normative criteria
that can be used as a guide to identify composite indicators that are robust and
non-redundant at the same time? Without providing a rigorous or all encompass-
ing answer (that should await further research), we suggest that it might be
possible to find composite indices that meet both criteria at the same time. Con-
sider the hypothetical robustness functions depicted in Figure 5: they will be
referred to as Rw,A, Rw,B, and Rw,C. In the case of Rw,A, there is high robustness and
high redundancy levels. Recall that, since the highest possible redundancy level
takes place when Rw(1) = 0, a necessary condition to have non-redundant com-
posite indices is that Rw(1) should not be “very small.” In the case of Rw,B one has
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low robustness and low redundancy levels. In the third case, Rw,C shows high
levels of robustness for most values of r, but as r approaches 1, the values of
Rw,C(r) increase sharply: this way, the necessary condition to have a non-
redundant composite index is satisfied. It remains as an open research question to
find sufficient conditions to obtain highly robust and non-redundant composite
indices. However, in order to advance our understanding on these issues, it would
be necessary to give a complete and rigorous definition of “redundancy,” a topic
that is beyond the scope of this paper.

Concluding Remarks

Ranking sets of objects in terms of their attributes is a crucial and extended
practice in many areas of human activity, especially those related to decision-
making processes in which a scarce resource has to be allocated to the most
deserving recipients. However, it turns out that the evaluation techniques that are
used to rank the objects are highly sensitive to the weights that are attached to the
alternative attributes that are taken into account. This makes the choice of a
specific weighting scheme a specially controversial and sensitive issue. In this paper
we have presented innovative ways of assessing the extent to which a multiattribute
ranking is sensitive to the choice of specific weights by taking into account the
whole set of weighting schemes.

The ideas and techniques presented in this paper can be very useful to assist
decision-makers when trying to assess the extent to which multiattribute rankings
are reliable or not by giving them a complete picture of the ranking problem.
However, it should be emphasized that it might not be appropriate to use these
techniques as a method of generating new weighting schemes to rank objects. In
particular, it might not be a good idea to look for the weighting scheme that
provides the highest confidence value or the robustness function with lower

Figure 5. Hypothetical Robustness Functions
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values. Robustness is not a goal in itself: if it were the only criterion to choose
among weighting schemes it might lead to non-intuitive results like putting the
whole weight to a single attribute. When judging the appropriateness of a com-
posite index, it is also important to take into account its redundancy of
composition—that is, the extent to which the information provided by the com-
posite index is the same with respect to its individual components. In this paper
we have argued that it might be possible to overcome the “robustness versus
redundancy” paradox and find composite indices that are highly robust and
non-redundant at the same time. However, more research is still needed on this
point.

Appendix

Definition 1. A Neighborhood System for the simplex Dk is the following
disjoint union:

N Nw:=
∈w kΔ
∪

where each Nw is a set of neighborhoods of w with the following properties:
(1) For any U,V ∈ Nw (U � V), either U ⊂ V or V ⊂ U. That is, the neigh-

borhoods of w are nested.
(2) For any U,V ∈ Nw (U � V) with U ⊂ V, there is always some W ∈ Nw such

that U ⊂ W ⊂ V. That is, the set of neighborhoods of w is dense.
(3) The set {w} ∈ Nw. That is, w is considered to be a neighborhood of itself.
(4) The set Dk ∈ Nw. That is, the whole simplex Dk is considered to be a

neighborhood of w.
(5) For any U ∈ Nw, U ⊆ Dk and U is a closed set.
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