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AN ASSUMPTION-FREE FRAMEWORK FOR MEASURING

PRODUCTIVITY CHANGE

by Bert M. Balk*

Erasmus University and Statistics Netherlands

The measurement of productivity change (or difference) is usually based on models that make use of
strong assumptions such as competitive behavior and constant returns to scale. This survey discusses
the basics of productivity measurement and shows that one can dispense with most if not all of the
usual, neoclassical assumptions. By virtue of its structural features, the measurement model is appli-
cable to individual establishments and aggregates such as industries, sectors, or economies.

1. Introduction

The methodological backing of productivity measurement and growth
accounting usually goes like this. The (aggregate) production unit considered has
an input side and an output side, and there is a production function that links
output quantities to input quantities. This production function includes a time
variable, and the partial derivative of the production function with respect to the
time variable is called technological change (or, in some traditions, multi-factor or
total factor productivity change). Further, it is assumed that the production unit
acts in a competitive environment; that is, input and output prices are assumed as
given. Next, it is assumed that the production unit acts in a profit maximizing
manner (or, it is said to be “in equilibrium”), and that the production function
exhibits constant returns to scale. Under these assumptions it then appears that
output quantity growth (defined as the output-share-weighted mean of the indi-
vidual output quantity growth rates) is equal to input quantity growth (defined as
the input-share-weighted mean of the individual input quantity growth rates) plus
the rate of technological change (or multi-factor or total factor productivity
growth).

For the empirical implementation one then turns to National Accounts,
census, and/or survey data, in the form of nominal values and deflators (price
indices). Of course, one cannot avoid dirty hands by making various imputations
where direct observations failed or were impossible (as in the case of labor input of
self-employed workers). In the case of capital inputs the prices, necessary for the
computation of input shares, cannot be observed, but must be computed as unit
user costs. The single degree of freedom that is here available, namely the rate of
return, is used to ensure that the restriction implied by the assumption of constant
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returns to scale, namely that profit equals zero, is satisfied. This procedure is
usually rationalized by the assumption of perfect foresight, which in this case
means that the ex post calculated capital input prices can be assumed as ex ante
given to the production unit, so that they can be considered as exogenous data for
the unit’s profit maximization problem.

This account is, of course, somewhat stylized, since there occur many, smaller
or larger, variations on this theme in the literature. Recurring, however, are a
number of so-called neo-classical assumptions: (1) a technology that exhibits
constant returns to scale; (2) competitive input and output markets; (3) optimizing
behavior; and (4) perfect foresight. A fine example from academia is provided by
Jorgenson et al. (2005, pp. 23, 37), while the Sources and Methods publication of
Statistics New Zealand (2006) shows that the neo-classical model has also deeply
invaded official statistical agencies.1 Another interesting example where neo-
classical assumptions have invaded the measurement system is the World Produc-
tivity Database of the United Nations Industrial Development Organisation
(UNIDO); see Isaksson (2009).

An interesting position is taken by the EU KLEMS Growth and Productivity
Accounts project. Though in their main text Timmer et al. (2007) adhere to the
Jorgenson et al. framework, there is a curious footnote:

Under strict neo-classical assumptions, MFP [multifactor productivity]
growth measures disembodied technological change. In practice [my empha-
sis], MFP is derived as a residual and includes a host of effects such as
improvements in allocative and technical efficiency, changes in returns to
scale and mark-ups as well as technological change proper. All these effects
can be broadly summarized as “improvements in efficiency,” as they improve
the productivity with which inputs are being used in the production process.
In addition, being a residual measure MFP growth also includes measurement
errors and the effects from unmeasured output and inputs.

There are more examples of authors who exhibit similar concerns, without,
however, feeling the need to adapt their conceptual framework.

I believe that for an official statistical agency, whose main task it is to provide
statistics to many different users for many different purposes, it is discomforting to
have such strong and often empirically refuted, assumptions built into the meth-
odological foundations of productivity and growth accounting statistics. This
especially applies to the behavioral assumptions numbered 2, 3, and 4. There is
ample evidence that, on average, markets are not precisely competitive; that pro-
ducers’ decisions frequently turn out to be less than optimal; and that managers
almost invariably lack the magical feature of perfect foresight. Moreover, the
environment in which production units operate is not so stable as the assumption
of a fixed production function seems to claim.

But I also believe that it is possible, and even advisable, to avoid making such
assumptions. In a sense I propose to start where the usual story ends, namely at the

1The neo-classical model figured already prominently in the 1979 report of the U.S. National
Research Council’s Panel to Review Productivity Statistics (Rees, 1979). An overview of national and
international practice is provided by the regularly updated OECD Compendium of Productivity Indi-
cators, available at www.oecd.org/statistics/productivity.
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empirical side.2 For any production unit, the total factor productivity index is then
defined as an output quantity index divided by an input quantity index. There are
various options here, depending on what one sees as input and output, but the
basic feature is that, given price and quantity (or value) data, this is simply a matter
of index construction. There appear to be no behavioral assumptions involved,
and this even applies—as will be demonstrated—to the construction of capital
input prices. Surely, a number of imputations must be made (as in the case of the
self-employed workers) and there is fairly large number of more or less defendable
assumptions involved (for instance on the depreciation rates of capital assets), but
this belongs to the daily bread and butter of economic statisticians.

In my view, structural as well as behavioral assumptions enter the picture as
soon as it comes to the explanation of productivity change. Then there are, depend-
ing on the initial level of aggregation, two main directions: (1) to explain produc-
tivity change at an aggregate level by productivity change and other factors
operating at lower levels of aggregation; (2) to decompose productivity change
into factors such as technological change, technical efficiency change, scale effects,
input- and output-mix effects, and chance. In this case, to proceed with the analysis
one cannot sidestep a technology model with certain specifications.

The contents of this paper are as follows. Section 2 outlines the architecture of
the basic, KLEMS-Y, input–output model, with its total and partial measures of
productivity change. This section also links productivity measurement and growth
accounting. Section 3 proceeds with the KL-VA and K-CF models. Four addi-
tional input–output models are briefly introduced in Section 4. This section also
contains a comparison of all the models. Section 5 introduces the capital utilization
rate. Section 6 concludes by discussing the main decomposition methods.

2. The Basic Input–Output Model

Let us consider a single production unit. This could be an establishment or
plant, a firm, an industry, a sector, or even an entire economy. I will simply speak
of a “unit.” For the purpose of productivity measurement, such a unit is consid-
ered as a (consolidated) input–output system. What does this mean?

For the output side as well as for the input side there is some list of commodi-
ties (according to some classification scheme). A commodity is thereby defined as
a set of closely related items (goods or services) which, for the purpose of analysis,
can be considered as “equivalent,” either in the static sense of their quantities being
additive or in the dynamic sense of displaying equal relative price or quantity
changes. Ideally, then, for any accounting period considered (ex post), say a year,
each commodity comes with a value (in monetary terms) and a price and/or a
quantity. If value and price are available, then the quantity is obtained by dividing
the value by the price. If value and quantity are available, then the price is obtained

2There is another, minor, difference between my approach and the usual story. The usual story
runs in the framework of continuous time in which periods are of infinitesimal short duration. When it
then comes to implementation several approximations must be assumed. My approach does not need
this kind of assumptions either, because this approach is entirely based on accounting periods of finite
duration, such as years.
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by dividing the value by the quantity. If both price and quantity are available, then
value is defined as price times quantity. In any case, for every commodity it must
be so that value equals price times quantity, the magnitudes of which of course
must pertain to the same accounting period. Technically speaking, the price
concept used here is the unit value. At the output side, the prices must be those
received by the unit, whereas at the input side, the prices must be those paid.
Consolidation (also called net-sector approach) means that the unit does not
deliver to itself. Put otherwise, all the intra-unit deliveries are netted out.

The situation as pictured in the preceding paragraph is typical for a unit
operating on a (output) market. The question how to deal with non-market units
will be considered where appropriate.

The inputs are customarily classified according to the KLEMS format. The
letter K denotes the class of owned, reproducible capital assets. The commodities
here are the asset-types, sub-classified by age category. Cohorts of assets are
assumed to be available at the beginning of the accounting period and, in dete-
riorated form (due to ageing, wear and tear), still available at the end of the
period. Investment during the period adds entities to these cohorts, while desin-
vestment, breakdown, or retirement remove entities. Examples include buildings
and other structures, land, machinery, transport, ICT equipment, and tools.
Theory implies that quantities sought are just the quantities of all these cohorts
of assets (together representing the productive capital stock), whereas the rel-
evant prices are their unit user costs (per type–age combination), constructed
from imputed interest rates, depreciation profiles, (anticipated) revaluations, and
tax rates. The sum of quantities times prices then provides the capital input cost
of a production unit.3

The letter L denotes the class of labor inputs; that is, all the types of work that
are important to distinguish, cross-classified for instance according to educational
attainment, gender, and experience (which is usually proxied by age categories).
Quantities are measured as hours worked (or paid), and prices are the correspond-
ing wage rates per hour. Where applicable, imputations must be made for the work
executed by self-employed persons. The sum of quantities times prices provides the
labor input cost (or the labor bill, or labor compensation, as it is sometimes
called).4

The classes K and L concern so-called primary inputs. The letters E, M, and
S denote three, disjunct classes of so-called intermediate inputs. First, E is the class
of energy commodities consumed by a production unit: oil, gas, electricity, and
water. Second, M is the class of all the (physical) materials consumed in the
production process, which could be sub-classified into raw materials, semi-
fabricates, and auxiliary products. Third, S is the class of all the business services
which are consumed for maintaining the production process. This includes the
services of leased capital assets and outsourced activities. Though it is not at all a

3The productive capital stock may be underutilized, which implies that not all the capital costs are
incurred in actual production. See Schreyer (2001, section 5.6) for a general discussion of this issue. For
a treatment in the neo-classical framework the reader is referred to Berndt and Fuss (1986), Hulten
(1986), and Morrison Paul (1999). We return to this issue later.

4The utilization rate of the labor input factors is assumed to be 1. Over- or under-utilization from
the point of view of jobs or persons is reflected in the wage rates.
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trivial task to define precisely all the intermediate inputs and to classify them, it can
safely be assumed that at the end of each accounting period there is a quantity and
a price associated with each of those inputs.

Then, for each accounting period, production cost is defined as the sum of
primary and intermediate input cost. Though this is usually not executed, there are
good reasons to exclude R&D expenditure from production cost, the reason being
that such expenditure is not related to the current production process but to a
future one. Put otherwise, by performing R&D, production units try to shift the
technology frontier. When it then comes to explaining productivity change, the
non-exclusion of R&D expenditure might easily lead to a sort of double-counting
error.5

At the output side, the letter Y denotes the class of commodities, goods,
and/or services, which are produced by the unit. Though in some industries, such
as services industries or industries producing mainly unique goods, definitional
problems are formidable, it can safely be assumed that for each accounting period
there are data on quantities produced. For units operating on the market there are
also prices. The sum of quantities times prices then provides the production
revenue, and, apart from taxes on production, revenue minus cost yields profit.

There is, of course, discussion possible about what to include or exclude at the
input and output sides. We are here more or less tacitly assuming a broad pro-
duction viewpoint, where for instance marketing services are included in the set S.
A broader viewpoint would take into account sales and uses from inventories.

Profit is an important financial performance measure. A somewhat less
obvious, but equally useful, measure is “profitability,” defined as revenue divided
by cost. Profitability gives, in monetary terms, the quantity of output per unit of
input, and is thus a measure of return to aggregate input (and in some older
literature called “return to the dollar”).

Monitoring the unit’s performance over time is here understood to mean
monitoring the development of its profit or its profitability. Both measures are, by
nature, dependent on price and quantity changes, at the two sides of the unit. If
there is (price) inflation and the unit’s profit has increased, then that mere fact does
not necessarily mean that the unit has been performing better. Also, though
general inflation does not influence the development of profitability, differential
inflation does. If output prices have increased more than input prices, then any
increase of profitability does not necessarily imply that the unit has been perform-
ing better. Thus, for measuring the economic performance of the unit one wants to
remove the effect of price changes, irrespective of whether those prices are within
or beyond the unit’s control.

Profit and profitability are different concepts. The first is a difference measure,
the second is a ratio measure. Change of a variable through time, which will be our
main focus, can also be measured by a difference or a ratio. It is important to
realize that, apart from technical details—such as, that a ratio does not make sense
if the variable changes sign or becomes equal to zero—these two ways of measur-

5See Diewert and Huang (2008) for more on this issue. A big problem seems to be the separation
of the R&D part of labor input.
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ing change are equivalent. Thus there appear to be a number of ways of mapping
the same reality in numbers, but differing numbers do not necessarily imply
differing realities.6

Profit change stripped of its price component will be called real profit change,
and profitability change stripped of its price component will be called real profit-
ability change.7 Another name for real profit (-ability) change is (total factor)
productivity change. Thus, productivity change can be measured as a ratio
(namely as real profitability change) or as a difference (namely as real profit
change). At the economy level, productivity change can be related to some
measure of overall welfare change. A down-to-earth approach would use the
National Accounts to establish a link between labor productivity change and
real-income-per-capita change. A more sophisticated approach, using economic
models and assumptions, was provided by Basu and Fernald (2002).

For a non-market unit the story must be told somewhat differently. For such
a unit there are no output prices; hence, there is no revenue. Though there is cost,
like for market units, there is no profit or profitability. National accountants
usually resolve the problem here by defining the revenue of a non-market unit to be
equal to its cost, thereby setting profit equal to 0 or profitability equal to 1.8 But
this leaves the problem that there is no natural way of splitting revenue change
through time in real and monetary components. This can only be done satisfac-
torily when there is some output quantity index that is independent from the input
quantity index.9

It is useful to remind the reader that the notions of profit and profitability,
though conceptually rather clear, are difficult to operationalize. One of the reasons
is that cost includes the cost of owned capital assets, the measurement of which
exhibits a substantial number of degrees of freedom, as we will see in the remainder
of this paper. Also, labor cost includes the cost of self-employed persons, for which
wage rates and hours of work usually must be imputed. It will be clear that all
these, and many other uncertainties spill over to operational definitions of the
profit and profitability concepts.

2.1. Notation

Let us now introduce some notation to define the various concepts we are
going to use. As stated, at the output side we have M items, each with their price
(received) pm

t and quantity ym
t , where m = 1, . . . , M, and t denotes an accounting

period (say, a year). Similarly, at the input side we have N items, each with their
price (paid) wn

t and quantity xn
t , where n = 1, . . . , N. To avoid notational clutter,

simple vector notation will be used throughout. All the prices and quantities are
assumed to be positive, unless stated otherwise. The ex post accounting point-of-
view will be used; that is, quantities and monetary values of the so-called flow

6It is easy to see, for example, that increasing profit can occur simultaneously with decreasing
profitability.

7Note that real change means nominal change deflated by some price index, not necessarily being
a (headline) CPI. “Stripping” is of course a vague term, and a more precise definition will be given later.

8This approach goes back to Hicks (1940).
9See the insightful paper by Douglas (2006). Though written from a New Zealand perspective, its

theme is generic.
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variables (output and labor, energy, materials, services inputs) are realized values,
complete knowledge of which becomes available after the accounting period has
expired. Similarly, the cost of capital input is calculated ex post. This is consistent
with official statistical practice.

The unit’s revenue, that is, the value of its (gross) output, during the account-
ing period t is defined as

R p y p yt t t
m
t

m
t

m

M

≡ ⋅ ≡
=
∑

1

,(1)

whereas its production cost is defined as

C w x w xt t t
n
t

n
t

n

M

≡ ⋅ ≡
=
∑

1

.(2)

The unit’s profit (disregarding taxes on production) is then given by its revenue
minus its cost; that is,

Πt t t t t t tR C p y w x≡ − = ⋅ − ⋅ .(3)

The unit’s profitability (also disregarding taxes on production) is defined as its
revenue divided by its cost; that is,

R C p y w xt t t t t t= ⋅ ⋅ .(4)

Notice that profitability expressed as a percentage (Rt/Ct - 1) equals the ratio of
profit to cost (Pt/Ct). In some circles this is called the margin of the unit. Given
positive prices and quantities, it will always be the case that Rt > 0 and Ct > 0.
Thus, profitability Rt/Ct is always positive, but profit Pt can be positive, negative,
or zero.

As stated, we are concerned with intertemporal comparisons. Moreover, in
this paper only bilateral comparisons will be considered, say comparing a certain
period t to another, adjacent or non-adjacent, period t′. Without loss of generality
it may be assumed that period t′ precedes period t. To further simplify notation,
the two periods will be labeled by t = 1 (which will be called the comparison period)
and t′ = 0 (which will be called the base period).

2.2. Productivity Index

The development over time of profitability is, rather naturally, measured by
the ratio (R1/C1)/(R0/C0). How to decompose this into a price and a quantity
component? By noticing that

R C

R C

R R

C C

1 1

0 0

1 0

1 0=(5)
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we see that the question reduces to the question how to decompose the revenue
ratio R1/R0 and the cost ratio C1/C0 into two parts. The natural answer is to grab
from the economic statistician’s toolkit a pair of price and quantity indices that
satisfy the Product Test:

p y

p y
P p y p y Q p y p y

1 1

0 0
1 1 0 0 1 1 0 0⋅

⋅
= ( ) ( ), , , , , , .(6)

A good choice is the Fisher price and quantity index, since these indices satisfy not
only the basic axioms of price and quantity measurement, but also a number of
other relatively important requirements (such as the Time Reversal Test). Thus we
are using here the “instrumental” or “axiomatic” approach for selecting measures
for aggregate price and quantity change, an approach that goes back to Fisher
(1922); see Balk (1995) for a survey and Balk (2008) for an up-to-date treatment.
When the temporal distance between periods 1 and 0 is not too large, any index
that is a second-order differential approximation to the Fisher index may instead
be used.10

Throughout this paper, when it comes to solving problems such as (6), we will
assume that Fisher indices are used. Thus, in particular,

R

R
P p y p y Q p y p y

P Q

F F

R R

1

0
1 1 0 0 1 1 0 0

1 0 1 0

= ( ) ( )
≡ ( ) ( )

, , , , , ,

, , ,

(7)

where the second line serves to define our shorthand notation. In the same way we
decompose

C

C
P w x w x Q w x w x

P Q

F F

C C

1

0
1 1 0 0 1 1 0 0

1 0 1 0

= ( ) ( )
≡ ( ) ( )

, , , , , ,

, , .

(8)

Of course, the dimensionality of the indices in expressions (7) and (8) will usually
be different. The subscripts R and C are used because, as will appear later, there are
more output and input concepts.

The number of items distinguished at the output side (M) and the input side
(N) of a production unit can be very high. To accommodate this, (detailed)
classifications are used, by which all the items are allocated to hierarchically
organized (sub-)aggregates. The calculation of output and input indices then
proceeds in stages. Theoretically, it suffices to distinguish only two stages. At the
first stage one calculates indices for the subaggregates at some level, and at the
second stage these subaggregate indices are combined to aggregate indices.

Consequentially, in expressions (7) and (8) instead of one-stage, two-stage
Fisher indices may also be used; that is, Fisher indices of Fisher indices for

10Note, however, that this is not unproblematic. For instance, when the Törnqvist price index PT(.)
is used, then the implicit quantity index (p1·y1/p0·y0)/PT (.) does not necessarily satisfy the Identity Test.
The Identity Test for a quantity index prescribes that such an index equals unity whenever quantities
have not changed.
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subaggregates (see Appendix A for precise definitions). Since the Fisher index is
not consistent-in-aggregation, a decomposition by two-stage Fisher indices will in
general numerically differ from a decomposition by one-stage Fisher indices.
Fortunately, one-stage and two-stage Fisher indices are second-order differential
approximations of each other (as shown by Diewert, 1978).

Using the two relations (7) and (8), the profitability ratio can be decomposed
as

R C

R C

R R

C C

P

P

Q

Q
R

C

R

C

1 1

0 0

1 0

1 0

1 0

1 0

1 0

1 0
= =

( )
( )

( )
( )

,

,

,

,
.(9)

The (total factor) productivity index (IPROD), for period 1 relative to period 0, is
now defined by

IPROD
Q

Q
R

C

1 0
1 0

1 0
,

,

,
.( ) ≡

( )
( )(10)

Thus IPROD(1, 0) is the real or quantity component of the profitability ratio. Put
otherwise, it is the ratio of an output quantity index to an input quantity index;
IPROD(1, 0) is the factor with which the output quantities on average have
changed relative to the factor with which the input quantities on average have
changed. If the ratio of these factors is larger (smaller) than 1, there is said to be
productivity increase (decrease).11

Notice that, using (7) and (8), there appear to be three other, equivalent
representations of the productivity index, namely

IPROD
R R P

C C P
R

C

1 0
1 0

1 0

1 0

1 0,
,

,
( ) =

( ) ( )
( ) ( )

(11)

=
( ) ( )

( )
R R P

Q
R

C

1 0 1 0

1 0

,

,
(12)

=
( )

( ) ( )
Q

C C P
R

C

1 0

1 01 0

,

,
.(13)

Put in words, we are seeing here respectively a deflated revenue index divided by a
deflated cost index, a deflated revenue index divided by an input quantity index,
and an output quantity index divided by a deflated cost index. We will return to
these expressions shortly.

Further, if the revenue change equals the cost change, R1/R0 = C1/C0 (for
which zero profit in the two periods is a sufficient condition), then it follows that

11This approach follows Diewert (1992), Diewert and Nakamura (2003), and Balk (2003a).
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IPROD
P

P
C

R

1 0
1 0

1 0
,

,

,
;( ) =

( )
( )(14)

that is, the productivity index is equal to an input price index divided by an output
price index. In general, however, the dual productivity index PC(1, 0)/PR(1, 0) will
differ from the primal one, QR(1, 0)/QC(1, 0).

For a non-market unit expression (10) cannot be used because there are no
output prices available for use in the output quantity index. But if there is some
prices-free output quantity index Q(y1, y0), then the (total factor) productivity
index, for period 1 relative to period 0, is naturally defined by Q(y1, y0)/QC(1, 0). An
alternative expression is obtained by replacing the input quantity index by the
deflated cost index, Q(y1, y0)/[(C1/C0)/PC(1, 0)].

2.3. Growth Accounting

The foregoing definitions are already sufficient to provide examples of simple
but useful analysis. Consider relation (12), and rewrite this as

R R IPROD Q PC R
1 0 1 0 1 0 1 0= ( ) × ( ) × ( ), , , .(15)

Taking logarithms, one obtains

ln ln , ln , ln , .R R IPROD Q PC R
1 0 1 0 1 0 1 0( ) = ( ) + ( ) + ( )(16)

This relation, implemented with Fisher and Törnqvist indices, was used by
Dumagan and Ball (2009) for an analysis of the U.S. agricultural sector.

Recall that revenue change through time is only interesting in so far as it
differs from general inflation. Hence, it makes sense to deflate the revenue ratio,
R1/R0, by a general inflation measure such as the (headline) Consumer Price Index
(CPI). Doing this, the last equation can be written as

ln ln , ln , ln
,R R

CPI CPI
IPROD Q

P

CPI CC
R

1 0

1 0 11 0 1 0
1 0⎛

⎝⎜
⎞
⎠⎟
= ( ) + ( ) +

( )
PPI 0

⎛
⎝⎜

⎞
⎠⎟

.(17)

Lawrence et al. (2006) basically used this relation to decompose “real” revenue
change into three factors: productivity change, input quantity change (which can
be interpreted as measuring change of the unit’s size), and “real” output price
change respectively.

Our second example follows from rearranging expression (13) and taking
logarithms. This delivers the following relation:

ln ln , ln , ln , .C C P Q IPRODC R
1 0 1 0 1 0 1 0( ) = ( ) + ( ) − ( )(18)

This relation was also used by Dumagan and Ball (2009).12 A further rearrange-
ment gives

12Note that it is not necessary to assume that Rt = Ct (t = 0, 1) as Dumagan and Ball did.
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ln
,

ln , ln , .
C C

Q
P IPROD

R
C

1 0

1 0
1 0 1 0

( )
⎛
⎝⎜

⎞
⎠⎟
= ( ) − ( )(19)

We see here that the growth rate of average cost can be decomposed into two
factors, namely the growth rate of input prices and a residual which is the negative
of productivity growth. Put otherwise, in the case of stable input prices the growth
rate of average cost is equal to minus the productivity growth rate.

Our third example follows from rearranging expression (11) and taking loga-
rithms. This delivers the following interesting relation:

ln , ln ln , ln , ,P P IPRODR C1 0
1

1
1 0 1 0

1

0
( ) = +

+
⎛
⎝⎜

⎞
⎠⎟
+ ( ) − ( )μ

μ
(20)

where mt ≡ Rt/Ct - 1. This relation analyses output price change as resulting from
three factors: change of the margin 1 + mt, input price change, and, with a negative
sign, productivity change.

All these are examples of what is called growth accounting. The relation
between index number techniques and growth accounting techniques can, more
generally, be seen as follows. Recall the generic definition (10), and rewrite this
expression as follows:

Q IPROD QR C1 0 1 0 1 0, , , .( ) = ( ) × ( )(21)

Taking logarithms, this multiplicative expression can be rewritten as

ln , ln , ln , .Q IPROD QR C1 0 1 0 1 0( ) = ( ) + ( )(22)

For index numbers in the neighborhood of 1 the logarithms thereof reduce to
percentages, and the last expression can be interpreted as saying that the percent-
age change of output volume equals the percentage change of input volume plus
the percentage change of productivity. Growth accounting economists like to
work with equations expressing output volume growth in terms of input volume
growth plus a residual that is interpreted as productivity growth, thereby suggest-
ing that the last two factors cause the first. However, productivity change cannot
be considered as an independent factor since it is defined as output quantity change
minus input quantity change. Put otherwise, a growth accounting table is nothing
but an alternative way of presenting productivity growth and its contributing
factors. And decomposition does not imply anything about causality.13

2.4. Productivity Indicator

Let us now turn to profit and its development through time. This is naturally
measured by the difference P1 - P0. Of course, such a difference only makes sense

13Thus, saying that output growth outpaced input growth because TFP increased is “like saying
that the sun rose because it was morning,” to paraphrase Friedman (1988, p. 58). Of course, when TFP
change is decomposed into factors such as technological change or efficiency change, and one is able to
measure such factors independently, more can be said.
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when the two money amounts involved, profit from period 0 and profit from
period 1, are deflated by some general inflation measure (such as the headline CPI).
In the remainder of this paper, when discussing difference measures, such a defla-
tion is tacitly presupposed.

How to decompose the profit difference into a price and a quantity compo-
nent? By noticing that

Π Π1 0 1 0 1 0− = −( ) − −( )R R C C ,(23)

we see that the question reduces to the question how to decompose revenue change
R1 - R0 and cost change C1 - C0 into two parts. We now grab from the economic
statistician’s toolkit a pair of price and quantity indicators that satisfy the analog
of the Product Test:

p y p y p y p y p y p y1 1 0 0 1 1 0 0 1 1 0 0⋅ − ⋅ = ( ) + ( )P Q, , , , , , .(24)

A good choice is the Bennet (1920) price and quantity indicator, since these
indicators satisfy not only the basic axioms (see Appendix A), but also a number
of other relatively important requirements (such as the Time Reversal Test) (see
Diewert 2005). But any indicator that is a second-order differential approximation
to the Bennet indicator may instead be used. Thus,

R R p y p y p y p yB B

R R

1 0 1 1 0 0 1 1 0 0

1 0 1 0
− = ( ) + ( )

≡ ( ) + ( )
P Q
P Q

, , , , , ,
, , ,

(25)

and similarly,

C C w x w x w x w xB B

C C

1 0 1 1 0 0 1 1 0 0

1 0 1 0
− = ( ) + ( )

≡ ( ) + ( )
P Q
P Q

, , , , , ,
, , .

(26)

Notice that the dimensionality of the Bennet indicators in these two decomposi-
tions is in general different.

The Bennet indicators are difference analogs to Fisher indices. Their aggre-
gation properties, however, are much simpler. The Bennet price or quantity indi-
cator for an aggregate is equal to the sum of the subaggregate indicators.

Using indicators, the profit difference can be written as

Π Π1 0 1 0 1 0 1 0 1 0
1 0 1 0

− = ( ) + ( ) − ( ) + ( )[ ]
= ( ) − ( ) +

P Q P Q
P P Q

R R C C

R C R

, , , ,
, , 11 0 1 0, , .( ) − ( )QC

(27)

The first two terms at the right-hand side of the last equality sign provide the price
component, whereas the last two terms provide the quantity component of the
profit difference. Thus, based on this decomposition, the (total factor) productivity
indicator (DPROD) is defined by

DPROD R C1 0 1 0 1 0, , , ;( ) ≡ ( ) − ( )Q Q(28)
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that is, an output quantity indicator minus an input quantity indicator. Notice that
productivity change is now measured as an amount of money. An amount larger
(smaller) than 0 indicates productivity increase (decrease).14

The equivalent expressions for difference-type productivity change are

DPROD R R C CR C1 0 1 0 1 01 0 1 0, , ,( ) = − − ( )[ ]− − − ( )[ ]P P(29)

= − − ( )[ ]− ( )R R R C
1 0 1 0 1 0P Q, ,(30)

= ( ) − − − ( )[ ]Q PR CC C1 0 1 01 0, , ,(31)

which can be useful in different situations. Notice further that, if R1 - R0 = C1 - C0

then

DPROD C R1 0 1 0 1 0, , , .( ) = ( ) − ( )P P(32)

For a non-market production unit, a productivity indicator is difficult to define.
Though one might be able to construe an output quantity indicator, it is hard to
see how, in the absence of output prices, such an indicator could be given a money
dimension.

Any productivity indicator can be transformed into an index and vice versa by
using the logarithmic mean (see Balk, 2008, pp. 128–9). For example, the index
corresponding to (28) is given by

exp
,

,

,

,
,

Q QR C

L R R L C C

1 0 1 0
1 0 1 0

( )
( ) −

( )
( )

⎧
⎨
⎩

⎫
⎬
⎭

(33)

where L(a, b) is the logarithmic mean.15 Note, however, that this index differs from
IPROD(1, 0) as a ratio of Fisher indices.

2.5. Partial Productivity Measures

The productivity index IPROD(1, 0) and indicator DPROD(1, 0) bear the
adjective “total factor” because all the inputs are taken into account. To define
partial productivity measures, in ratio or difference form, additional notation is
necessary.

All the items at the input side of our production unit are assumed to be
allocatable to the five, mutually disjunct, categories mentioned earlier, namely
capital (K), labor (L), energy (E), materials (M), and services (S). The entire input
price and quantity vectors can then be partitioned as w w w w w wt

K
t

L
t

E
t

M
t

S
t= ( ), , , , and

x x x x x xt
K
t

L
t

E
t

M
t

S
t= ( ), , , , , respectively. Energy, materials, and services together

form the category of intermediate inputs, that is, inputs which are acquired from
other production units or imported. Capital and labor are called primary inputs.

14This approach follows Balk (2003a).
15For any two strictly positive real numbers a and b their logarithmic mean is defined by

L(a, b) = (a - b)/ln(a/b) if a � b and L(a, a) = a. The properties of this mean are discussed in Balk
(2008).
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Consistent with this distinction the price and quantity vectors
can also be partitioned as w w wt

KL
t

EMS
t= ( ), and x x xt

KL
t

EMS
t= ( ), , or as

w w w wt
K
t

L
t

EMS
t= ( ), , and x x x xt

K
t

L
t

EMS
t= ( ), , . Since monetary values are additive,

total production cost can be decomposed in a number of ways, such as

C w x w x w x w x w xt
n
t

n
t

n K
n
t

n
t

n L
n
t

n
t

n E
n
t

n
t

n M
n
t

n
t

n S

= + + + +

≡
∈ ∈ ∈ ∈ ∈
∑ ∑ ∑ ∑ ∑
CC C C C C
C C C
C C

K
t

L
t

E
t

M
t

S
t

K
t

L
t

EMS
t

KL
t

EMS
t

+ + + +
≡ + +
≡ + .

(34)

Now, using as before Fisher indices, the labor cost ratio can be decomposed as

C

C
P w x w x Q w x w x

P Q

L

L

F
L L L L

F
L L L L

L L

1

0
1 1 0 0 1 1 0 0

1 0 1 0

= ( ) ( )
≡ ( )

, , , , , ,

, ,(( ).

(35)

Then the labor productivity index (ILPROD) for period 1 relative to period 0 is
defined by

ILPROD
Q

Q
R

L

1 0
1 0

1 0
,

,

,
;( ) ≡

( )
( )(36)

that is, the ratio of an output quantity index to a labor input quantity
index. Notice that usually the labor productivity index is defined by speci-
fying the labor input quantity index to be the Dutot or simple
sum quantity index Q w x w x x xD

L L L L nn L nn L

1 1 0 0 1 0, , ,( ) ≡ ∈ ∈∑ ∑ . The ratio
Q w x w x Q w x w xF

L L L L
D

L L L L
1 1 0 0 1 1 0 0, , , , , ,( ) ( ) is then said to measure the shift in labor

quality or composition.
In precisely the same way one can define the capital productivity index

IKPROD
Q

Q
R

K

1 0
1 0

1 0
,

,

,
( ) ≡

( )
( )(37)

and the other partial productivity indices IkPROD for k = E, M, S. The ratio

ILPROD
IKPROD

Q

Q
K

L

1 0
1 0

1 0

1 0
,
,

,

,

( )
( )

=
( )
( )(38)

is called the index of “capital deepening.” Loosely speaking, this index measures
the change of the quantity of capital input per unit of labor input.

The relation between total factor and partial productivity indices is as follows.
Let QC(1, 0) be a two-stage Fisher index, that is,

Q Q Q C C k K L E M SC
F

k k k1 0 1 0 1 0, , , , ; , , , ,( ) ≡ ( ) =( )(39)

where all the Qk(1, 0) are Fisher indices. It is straightforward to check that then
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(40)

which is not a particularly simple relation. If instead as second-stage quantity
index the Cobb–Douglas functional form was chosen, that is,

Q QC k
k

k k
k

k1 0 1 0 1 0, , ,( ) ≡ ( ) = >( )∏ ∏α α αwhere(41)

then it appears that

ln , ln , .IPROD IkPRODk
k

1 0 1 0( ) ≡ ( )∏α(42)

This is a very simple relation between total factor productivity change and partial
productivity change. Notice, however, that this simplicity comes at a cost. Defi-
nition (41) implies for the relation between aggregate and subaggregate input price
indices that

P P
C C

C C
C k

k kk
k

k

k
1 0 1 0

1 0

1 0
, , .( ) = ( )

( )∏
∏ α

α(43)

Such an index does not necessarily satisfy the fundamental Identity Test; that is, if
all the prices in period 1 are the same as in period 0 then PC(1, 0) does not
necessarily deliver as outcome 1.

Let us now turn to partial productivity indicators. Using the Bennet indica-
tors, the labor cost difference between periods 0 and 1 is decomposed as

C C w x w x w x w xL L
B

L L L L
B

L L L L

L L

1 0 1 1 0 0 1 1 0 0

1 0
− = ( ) + ( )

≡ ( ) +
P Q
P Q

, , , , , ,
, 11 0, .( )

(44)

In the same way one can decompose the capital, energy, materials, and services
cost difference. However, since costs are additive, it turns out that the total factor
productivity indicator can be written as

DPROD R k
k K L E M S

1 0 1 0 1 0, , , .
, , , ,

( ) = ( ) − ( )
=
∑Q Q(45)
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By definition, the left-hand side is real profit change. The right-hand side gives the
contributing factors. The contribution of category k to real profit change is simply
measured by the amount Qk(1, 0). A positive amount, which means that the
aggregate quantity of input category k has increased, means a negative contribu-
tion to real profit change.

3. Different Models, Similar Measures

The previous section laid out the basic features of what is known as the
KLEMS model of production. This framework is currently used by the U.S.
Bureau of Labor Statistics and Statistics Canada for productivity measures at the
industry level of aggregation (see Dean and Harper, 2001, and Harchaoui et al.,
2001, respectively). The KLEMS model, or, as I will denote it, the KLEMS-Y
model delivers gross-output based total or partial productivity measures.
However, there are more models in use, differing from the KLEMS-Y model by
their input and output concepts. Since these models presuppose revenue as mea-
sured independently from cost, they are not applicable to non-market units.

3.1. The KL-VA Model

The first of these models uses value added (VA) as its output concept. The
production unit’s value added (VA) is defined as its revenue minus the costs of
energy, materials, and services; that is,

VA R C
p y w x

t t
EMS
t

t t
EMS
t

EMS
t

≡ −
= ⋅ − ⋅ .

(46)

The value-added concept subtracts the total cost of intermediate inputs from the
revenue obtained, and in doing so essentially conceives the unit as producing value
added (that is, money) from the two primary input categories capital and labor. It
is assumed that VAt > 0.16

Although gross output, represented by yt, is the natural output concept, the
value-added concept is important when one wants to aggregate single units to
larger entities. Gross output consists of deliveries to final demand and intermediate
destinations. The split between these two output categories depends very much on
the level of aggregation. Value added is immune to this problem. It enables one to
compare (units belonging to) different industries. From a welfare-theoretic point
of view the value-added concept is important because value added can be con-
ceived as the income (from production) that flows into society.17

In this input–output model the counterpart to profitability is the ratio of value
added to primary inputs cost, VA Ct

KL
t , and the natural starting point for defining

16An early advocate of the value added output concept was Burns (1930). Specifically, he favored
what later in this paper will be defined as net value added. Burns was aware of the possibility that for
very narrowly defined production units and small time periods value added may become non-positive.

17In between the KLEMS-Y model and the KL-VA model figures the KLE″M″S-Margin model,
applicable to distributive trade units. Here the set of material inputs M is split into two parts, M′
denoting the goods for resale and M″ the auxiliary materials. Likewise E, the set of energy inputs, is
split into E′ and E″. The Margin is then defined as R Ct

E M
t− ′ ′∪ . See Inklaar and Timmer (2008).
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a productivity index is to consider the development of this ratio through time.
Since VA C VA C VA VA C CKL

t
KL KL KL

1 0 0 1 0 1 0( ) ( ) = ( ) ( ) , we need a decomposition of
the value-added ratio and a decomposition of the primary inputs cost ratio.

The question how to decompose a value-added ratio in a price and a quantity
component cannot be answered unequivocally. There are several options here, the
technical details of which are deferred to Appendix B. Suppose, however, that a
satisfactory decomposition is somehow available; that is,

VA

VA
P QVA VA

1

0 1 0 1 0= ( ) ( ), , .(47)

Using one- or two-stage Fisher indices, the primary inputs cost ratio is decom-
posed as

C

C
P w x w x Q w x w x

P

KL

KL

F
KL KL KL KL

F
KL KL KL KL

K

1

0
1 1 0 0 1 1 0 0= ( ) ( )

≡

, , , , , ,

LL KLQ1 0 1 0, , .( ) ( )

(48)

The value-added based (total factor) productivity index for period 1 relative to
period 0 is then defined as

IPROD
Q

QVA
VA

KL

1 0
1 0

1 0
,

,

,
.( ) ≡

( )
( )(49)

This index measures the “quantity” change of value added relative to the quantity
change of primary input; or, can be seen as the index of real value added relative
to the index of real primary input.

This is by far the most common model. It is used by the U.S. Bureau of Labor
Statistics, Statistics Canada, Australian Bureau of Statistics, Statistics New
Zealand, and the Swiss Federal Statistical Office in their official productivity
statistics.

In the KL-VA model the counterpart to profit is the difference of value added
and primary inputs cost, VA Ct

KL
t− , and the natural starting point for defining a

productivity indicator is to consider the development of this difference through
time. However, since costs are additive, we see that, by using definition (46),

VA C R C C
R C

t
KL
t t

EMS
t

KL
t

t t

− = − −
= − .

(50)

Thus, profit in the KL-VA model is the same as profit in the KLEMS-Y model,
and the same applies to the price and quantity components of profit differences.
Using Bennet indicators, one easily checks that

DPROD

DPROD

VA VA KL

R C

1 0 1 0 1 0
1 0 1 0

1 0

, , ,
, ,

, ;

( ) = ( ) − ( )
= ( ) − ( )
= ( )

Q Q
Q Q

(51)
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that is, the productivity indicators are the same in the two models. This, however,
does not hold for the productivity indices. One usually finds that IPRODVA(1,
0) � IPROD(1, 0). Balk (2003b) showed that if profit is zero in both periods, that
is, Rt = Ct (t = 0, 1), then, for certain two-stage indices which are second-order
differential approximations to Fisher indices,

ln , , ln , ,IPROD D IPRODVA 1 0 1 0 1 0( ) = ( ) ( )(52)

where D(1, 0) � 1 is the (mean) Domar-factor (= ratio of revenue over value
added). Usually expression (52) is, in a continuous-time setting, derived under a set
of strong neo-classical assumptions (see, for instance, Gollop (1979), Jorgenson
et al. (2005, p. 298), or Schreyer (2001, p. 143)), so that it seems to be some deep
economic-theoretical result. From the foregoing it may be concluded, however,
that the inequality of the value-added based productivity index and the gross-
output based productivity index is only due to the mathematics of ratios and
differences. There is no underlying economic phenomenon.

The value-added based labor productivity index for period 1 relative to period
0 is defined as

ILPROD
Q

QVA
VA

L

1 0
1 0

1 0
,

,

,
,( ) ≡

( )
( )(53)

where QL(1, 0) was defined by expression (35). The index defined by expression (53)
measures the “quantity” change of value added relative to the quantity change of
labor input; or, can be seen as the index of real value added relative to the index of
real labor input.

Recall that the labor quantity index QL(1, 0) is here defined as a Fisher index,
acting on the prices and quantities of all the types of labor that are being distin-
guished. Suppose that the units of measurement of the various types are in some
sense the same; that is, the quantities of all the types are measured in hours, or in
full-time equivalent jobs, or in some other common unit. Then one frequently
considers, instead of the Fisher quantity index, the Dutot or simple sum quantity
index,

Q x xL
D

n
n L

n
n L

1 0 1 0, .( ) ≡
∈ ∈
∑ ∑(54)

The simple value-added based labor productivity index, defined as

ILPROD
Q

QVA
D VA

L
D1 0

1 0

1 0
,

,

,
,( ) ≡

( )
( )(55)

has the alternative interpretation as an index of real value added per unit of labor.
As such this measure frequently figures at the left-hand side (thus, as explanandum)
in a growth accounting equation. However, for deriving such a relation nothing
spectacular is needed, as will now be shown.
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Consider the definition of the value-added based total factor productivity
index, (49), and rewrite this as

Q IPROD QVA VA KL1 0 1 0 1 0, , , .( ) = ( ) × ( )(56)

Dividing both sides of this equation by the Dutot labor quantity index, and
applying definition (55), one obtains18

ILPROD IPROD
Q

Q

Q

QVA
D

VA
KL

L

L

L
D1 0 1 0

1 0

1 0

1 0

1 0
, ,

,

,

,

,
( ) = ( ) ×

( )
( )

×
( )
( ))

.(57)

Taking logarithms and, on the assumption that all the index numbers are in the
neighborhood of 1, interpreting these as percentages, the last equation can be
interpreted as: (simple) labor productivity growth equals total factor productivity
growth plus “capital deepening” plus “labor quality” growth. Again, productivity
change is measured as a residual and, thus, the three factors at the right-hand side
of the last equation can in no way be regarded as causal factors.

If, continuing our previous example, the primary inputs quantity index was
defined as a two-stage index of the form

Q Q QKL K L1 0 1 0 1 0 0 11, , , ,( ) ≡ ( ) ( ) < <( )−α α α(58)

where the reader recognizes the simple Cobb–Douglas form, then the index of
“capital deepening” reduces to the particularly simple form

Q

Q

Q

Q
KL

L

K

L

1 0

1 0

1 0

1 0

,

,

,

,
.

( )
( )

=
( )
( )

⎡
⎣⎢

⎤
⎦⎥
α

(59)

The “labor quality” index, Q QL L
D1 0 1 0, ,( ) ( ), basically measures compositional

shift or structural change among the labor types in the class L, since it is a ratio of
two quantity indices.

3.2. The K-CF Model

The next model uses cash flow (CF) as its output concept. The unit’s cash flow
is defined as its revenue minus the costs of labor and intermediate inputs; that is

CF R C
p y w x
VA C

t t
LEMS
t

t t
LEMS
t

LEMS
t

t
L
t

≡ −
= ⋅ − ⋅
= − .

(60)

18This is a discrete time version of expression (23) of Baldwin et al. (2007).

Review of Income and Wealth, Series 56, Special Issue 1, June 2010

© 2010 The Author
Journal compilation © International Association for Research in Income and Wealth 2010

S242



This input–output model basically sees cash flow as the return to capital input. It
is assumed that CFt > 0. Of course, if there is no owned capital (that is, all capital
assets are leased), then CK

t = 0, and this model does not make sense.19

The counterpart to profitability is now the ratio of cash flow to capital
input cost, CF Ct

K
t , and the natural starting point for defining a productivity

index is to consider the development of this ratio through time. Since
CF CF CF C CF CF C CK K K K

1 1 0 0 1 0 1 0( ) ( ) = ( ) ( ), we need a decomposition of the
cash-flow ratio and a decomposition of the capital input cost ratio.

Decomposing a cash-flow ratio in a price and a quantity component is struc-
turally similar to decomposing a value-added ratio (see Appendix B). Thus,
suppose that a satisfactory decomposition is somehow available; that is,

CF

CF
P QCF CF

1

0 1 0 1 0= ( ) ( ), , .(61)

Using Fisher indices, the capital input cost ratio is decomposed as

C

C
P w x w x Q w x w x

P Q

K

K

F
K K K K

F
K K K K

K K

1

0
1 1 0 0 1 1 0 0

1 0 1 0

= ( ) ( )
≡ ( )

, , , , , ,

, ,(( ).

(62)

The cash-flow based (total factor) productivity index for period 1 relative to period
0 is then defined as

IPROD
Q

QCF
CF

K

1 0
1 0

1 0
,

,

,
.( ) ≡

( )
( )(63)

This index measures the change of the quantity component of cash flow
relative to the quantity change of capital input; or can be seen as the index of real
cash flow relative to the index of real capital input.

In the K-CF model the counterpart to profit is the difference of cash flow and
capital input cost, CF Ct

K
t− , and the natural starting point for defining a produc-

tivity indicator is to consider the development of this difference through time.
However, since costs are additive, we see that

CF C R C C
R C

t
K
t t

LEMS
t

K
t

t t

− = − −
= − .

(64)

Thus, profit in the K-CF model is the same as profit in the KLEMS-Y model, and
the same applies to the price and quantity components of profit differences. Using
Bennet indicators, one easily checks that

19Cash flow is also called gross profit. The National Accounts term is “gross operating surplus.” In
some sectors it occasionally occurs that production units exhibit negative cash flows during certain
periods. An example of such a sector is agriculture.
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DPROD

DPROD

CF CF K

R C

1 0 1 0 1 0
1 0 1 0

1 0

, , ,
, ,

, ;

( ) ≡ ( ) − ( )
= ( ) − ( )
= ( )

Q Q
Q Q

(65)

that is, the productivity indicators are the same in the two models. This, however,
does not hold for the productivity indices. In general it will be the case that
IPRODCF(1, 0) � IPROD(1, 0). Following the reasoning of Balk (2003b) it is
possible to show that, if profit is zero in both periods, that is, Rt = Ct (t = 0, 1),
then, for certain two-stage indices which are second-order differential approxima-
tions to Fisher indices,

ln , , ln , ,IPROD E IPRODCF 1 0 1 0 1 0( ) = ( ) ( )(66)

where E(1, 0) � 1 is the ratio of mean revenue over mean cash flow. Since
CFt � VAt, it follows that E(1, 0) � D(1, 0).

4. More Models

The K-CF model provides a good point of departure for a discussion of the
measurement of capital input cost. Cash flow, as defined in the foregoing, is the (ex
post measured) monetary balance of all the flow variables. Capital input cost is
different, since capital is a stock variable. Basically, capital input cost is measured
as the difference between the book values of the production unit’s owned capital
stock at beginning and end of the accounting period considered. The theory, for
which no behavioral or other far-reaching assumptions appear to be required, was
developed by Balk (2009a).

In the framework of this theory it appears that capital input cost can rather
naturally be split into four meaningful components,

C C C C CK
t

K w
t

K e
t

K u
t

K tax
t= + + +, , , , ,(67)

respectively denoting the aggregate cost of waiting, anticipated time-series depre-
ciation, unanticipated revaluation, and tax. This leads to four additional input–
output models.

The first two models are variants of the KL-VA model. The idea here is that
the (ex post) cost of time-series depreciation plus tax should be treated like the cost
of intermediate inputs, and subtracted from value added. Hence, the output
concept is called net value added, and defined by

NVA VA C C Ct t
K e
t

K u
t

K tax
t≡ − + +( ), , , .(68)

The remaining input cost is the sum of labor cost, CL
t , and waiting cost of capital,

CK w
t

, .
Some argue that this model is to be preferred from a welfare-theoretic point

of view. If the objective is to hold owned capital (including investments during the
accounting period) in terms of money intact, then depreciation—whether expected
or not—and tax should be treated like intermediate inputs (Spant, 2003). This
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model was also strongly defended by Rymes (1983). Apart from land, he con-
sidered labor and waiting as the only primary inputs, and connected this with a
Harrodian model of technological change.

Diewert et al. (2005), Diewert and Lawrence (2006), and Diewert and Wykoff
(forthcoming) suggested consideration of unanticipated revaluation, which is the
unanticipated part of time-series depreciation, as a monetary component that must
be added to profit. The result could be called “profit from normal operations of the
production unit.” Following this suggestion, the output concept becomes

NNVA VA C Ct t
K e
t

K tax
t≡ − +( ), , ,(69)

which could be called normal net value added. As inputs are considered labor, CL
t ,

and waiting cost of capital, CK w
t

, .
The last two models are variants of the K-CF model. Here also the idea is that

the (ex post) cost of time-series depreciation plus tax should be treated like the cost
of intermediate inputs, and subtracted from cash flow. Hence, the output concept
is called net cash flow, and defined by

NCF CF C C Ct t
K e
t

K u
t

K tax
t≡ − + +( ), , , .(70)

The remaining input cost is the waiting cost of capital, CK w
t

, .
A variant of the K-NCF model is obtained by considering unanticipated

revaluation, which is the unanticipated part of time-series depreciation, as a com-
ponent that must be added to profit. Hence, the output concept becomes

NNCF CF C Ct t
K e
t

K tax
t≡ − +( ), , ,(71)

which could be called normal net cash flow. The only input category is the waiting
cost of capital, CK w

t
, .20

A number of observations can now be made. First, all the input–output
models (KLEMS-Y, KL-VA, KL-NVA, KL-NNVA, K-CF, K-NCF, and
K-NNCF) lead to different (total factor) productivity indices. However, most of
these differences are artefacts, caused by a different mixing of subtraction and
division.21 Thus, it depends on purpose and context of a study which particular
model is chosen for the presentation of results. When productivity indicators are
compared, the real difference turns up, namely between the KL-NNVA and
K-NNCF models on the one hand and the rest on the other hand. The reason is
that the KL-NNVA and K-NNCF are based on a different profit concept, namely
Π Π*t t

K u
tC= + , .

Second, the waiting cost of capital is determined by an interest rate rt. Setting
in the accounting relation of the K-NCF model,

20In the model of Hulten and Schreyer (2006), total (= unanticipated plus anticipated) revaluation
is added to profit. This is consistent with SNA93’s prescription for non-market units.

21Rymes (1983) would single out the KL-NVA model as the “best” one, but this is clearly not
backed by the argument presented here.
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C NCFK w
t t t

, ,+ =Π(72)

profit Pt equal to zero, and solving this equation then for rt delivers the so-called
“endogenous,” or “internal,” or “balancing” rate of return. However, one could
do the same with the accounting relation of the K-NNCF model,

C NNCFK w
t t t

, .+ =Π*(73)

This would lead to a thing one could call the “normal endogenous” rate of return.
The important point to stress here is that there appears to be no single concept of
the endogenous rate of return. There is rather a continuum of possibilities, depend-
ing on the way one wants to deal with unanticipated revaluations.

Third, an endogenous rate of return, of whatever variety, can only be calcu-
lated ex post. Net cash flow as well as normal net cash flow require for their
computation that the accounting period has expired.

Fourth, as the name suggests, a total factor productivity index or indicator
suggests that all the inputs and outputs are correctly observed. Unobserved inputs
and outputs and measurement errors lead to a distorted profit figure and have
impact on the interpretation of total factor productivity change. Since an endog-
enous rate of return can be said to absorb profit, the extent of undercoverage has
also implications for the interpretation of the rate of return (see also Schreyer,
forthcoming). Put otherwise, since an endogenous rate of return closes the gap
between the input and the output side of the production unit, it is influenced by all
sorts of measurement errors.

The question whether to use, for a certain production unit, an endogenous or
an exogenous rate of return belongs, according to Diewert (2008), to the list of still
unresolved issues. The practice of official statistical agencies is varied, as a brief
survey learns.

The U.S. Bureau of Labor Statistics uses endogenous rates (see Dean and
Harper, 2001),22 as does Statistics Canada (see Harchaoui et al., 2001). The Aus-
tralian Bureau of Statistics uses, per production unit considered, the maximum of
the endogenous rate and a certain exogenous rate (set equal to the annual percent-
age change of the CPI plus 4 percent) (see Roberts, 2006). Statistics New Zealand
uses endogenous rates (according to their Sources and Methods 2006 publication).
The Swiss Federal Statistical office has the most intricate system: per production
unit the simple mean of the endogenous rate and a certain exogenous rate is used
as the final exogenous rate (see Rais and Sollberger, 2008). Concerning the endog-
enous rates, however, these sources are not clear as to which concept is used
precisely.

Statistics Netherlands sets the interest rate equal to the so-called Internal
Reference Rate, which is the interest rate that banks charge to each other, plus
1.5 percent (see van den Bergen et al., 2007).

For the Netherlands, interesting empirical results were obtained by Vancau-
teren et al. (2009). Over the years 1995 to 2007 these authors calculated total factor

22It seems to me that Jorgenson (2009) is also proposing endogenous rates of return for the four
sectors considered.
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productivity changes according to the KLEMS-Y, KL-VA, KL-NVA, K-CF, and
K-NCF models, with exogenous and endogenous interest rates, for nine industrial
sectors and their aggregate.

5. Capital Utilization

Until now it was tacitly assumed that the productive capital stock was fully
used in actual production. We want to make this assumption explicit. For intro-
ducing the capital utilization rate, let us return to the K-CF model, which is
governed by the equation

C CFK
t t t+ =Π .(74)

Cash flow, if positive, is seen as the return to the productive capital stock. But what
if this stock is only partly used in productive operations? I sketch the simplest
approach.

Let θ θK
t

K
t0 1< ≤( ) denote the fraction of the productive capital stock (aver-

aged over all the type-age classes) that is actually used during period t. Then one
easily checks that the foregoing equation can be written as

θ θK
t

K
t

K
t

K
t t tC C CF+ −( ) + =1 Π ,(75)

where θK
t

K
tC and 1−( )θK

t
K
tC are the user costs of the used and unused parts of the

capital stock, respectively.23

Now, like unanticipated revaluation, one can argue that the cost of unused
capital should be added to profit and that the measurement of productivity change
should be based on the equation

θK
t

K
t t tC CF+ =Π** ,(76)

with Π Π**t
K
t

K
t tC≡ −( ) +1 θ being the profit adjusted for underutilization of

capital. Put otherwise, in this model the (total factor) productivity index for period
1 relative to period 0 is defined as

IPROD
Q

QCFU
CF

K K K

1 0
1 0

1 01 0,
,

,
.( ) ≡

( )
( ) ( )θ θ(77)

This is the index of real cash flow divided by the index of real capital input
multiplied by the change of the capital utilization rate.

It is straightforward to check that the utilization rate can be introduced in any
of the models discussed in this article. This exercise is left to the reader. On the
empirical relevance of the capital utilization rate in productivity measurement, see
Coremberg (2008).

23It is implicitly assumed here that the unit user costs of used and unused assets are the same. See
Hulten (2009) for a brief discussion of this issue.
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6. Conclusion

After measurement comes explanation. Depending on the initial level of
aggregation, there appear to be two main directions. The first is disaggregation: the
explanation of productivity change at an aggregate level (economy, sector, indus-
try) by productivity change at a lower level (firm, plant) and other factors, collec-
tively subsumed under the heading of reallocation (expansion, contraction, entry,
and exit of units). This topic was reviewed by Balk (2003a, section 6). As the
example of Balk and Hoogenboom-Spijker (2003) demonstrates, this type of
research is of economic–statistical nature, and there are no neoclassical assump-
tions involved. This was shown more formally by Balk (2009b).

The second direction is concerned with the decomposition of productivity
change into factors such as technological change, technical efficiency change, scale
effects, input- and output-mix effects, and chance. The basic idea can be explained
as follows.

To start with, for each time period t the technology to which the production
unit under consideration has access is defined as the set St of all the input–output
quantity combinations which are feasible during t. Such a set is assumed to have
nice properties like being closed, bounded, and convex. Of particular interest is the
subset of St, called its frontier, consisting of all the efficient input–output combi-
nations. An input–output quantity combination is called efficient when output
cannot be increased without increasing some input and input cannot be decreased
without decreasing some output.

From base period to comparison period our production unit moves from
(x0, y0) ∈ S0 to (x1, y1) ∈ S1, and these two input–output combinations are not
necessarily efficient. Decomposition of productivity change means that between
these two points some hypothetical path must be constructed, the segments of
which can be given a distinct interpretation.

In particular, we consider the projection of (x0, y0) on the frontier of S0, and
the projection of (x1, y1) on the frontier of S1. Comparing the base period and
comparison period distance between the original points and their projections
provides a measure of efficiency change.

Two more points are given by projecting (x0, y0) also on the frontier of S1, and
(x1, y1) also on the frontier of S0. The distance between the two frontiers at the base
and comparison period projection points provides a (local) measure of technologi-
cal change. And, finally, moving over each frontier (which is a surface in N + M-
dimensional space) from a base period to a comparison period projection point
provides measures of the scale and input–output mix effects.

The construction of all those measures is discussed by Balk (2004). Since there
is no unique path connecting the two observations, there is no unique decompo-
sition either.

And here come the neoclassical assumptions, at the end of the day rather than
at its beginning. Suppose that the production unit always stays on the frontier, that
its input- and output-mix is optimal at the, supposedly given, input and output
prices, and that the two technology sets exhibit constant returns to scale, then
productivity change reduces to technological change (see Balk (1998, section 3.7)
for a formal proof). The technology sets are thereby supposed to reflect the true
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state of nature, which rules out chance as a factor also contributing to productivity
change.24

Appendix A: Indices and Indicators

The basic measurement tools used are price and quantity indices and indica-
tors. The first are ratio-type measures, and the second are difference-type mea-
sures. What, precisely, are the requirements for good tools? The following just
serves to introduce and illustrate some concepts used in the main text of this
article. For a complete treatment, the reader is referred to Balk (2008).

Indices

A price index is a positive, continuously differentiable function
P p y p y N1 1 0 0 4, , , :( ) ℜ →ℜ++ ++ that correctly indicates any increase or decrease of
the elements of the price vectors p1 or p0, conditional on the quantity vectors y1 and
y0. A quantity index is a positive, continuously differentiable function of the same
variables Q p y p y N1 1 0 0 4, , , :( ) ℜ →ℜ++ ++ that correctly indicates any increase or
decrease of the elements of the quantity vectors y1 or y0, conditional on the price
vectors p1 and p0. The number N is called the dimension of the price or quantity
index.

The basic requirements on price and quantity indices comprise: (1) that they
exhibit the correct monotonicity properties; (2) that they are linearly homogeneous
in comparison period prices (quantities, respectively); (3) that they satisfy the
Identity Test; (4) that they are homogeneous of degree 0 in prices (quantities,
respectively); and (5) that they are invariant to changes in the units of measure-
ment of the commodities. The Product Test requires that price index times quan-
tity index equals the value ratio.

Any function P(p1, y1, p0, y0) or Q(p1, y1, p0, y0), invariant to changes in the
units of measurement, can be written as a function of only 3N variables, namely
the price relatives p pn n

1 0 or the quantity relatives y yn n
1 0, the comparison period

values υn n np y1 1 1≡ , and the base period values υn n np y n N0 0 0 1≡ =( ), . . . , .
Some simple examples might be useful to illustrate this. Consider the Laspey-

res price index as function of prices and quantities,

P p y p y p y p yL 1 1 0 0 1 0 0 0, , , ,( ) ≡ ⋅ ⋅

and notice that this index can be written as a function of price relatives and (base
period) values,

P p y p y p pL
n n n

n

N

n
n

N
1 1 0 0 1 0 0

1

0

1

, , , .( ) = ( )
= =
∑ ∑υ υ

Similarly, the Paasche price index

24On stochastic productivity measurement, see Chambers (2008).
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P p y p y p y p yP 1 1 0 0 1 1 0 1, , ,( ) ≡ ⋅ ⋅

can be written as a function of price relatives and (comparison period) values,

P p y p y p pP
n n n

n

N

n
n

N
1 1 0 0 0 1 1

1

1

1

1

, , , .( ) = ( )⎛
⎝⎜

⎞
⎠⎟= =

−

∑ ∑υ υ

Finally, the Fisher price index, defined as the geometric mean of the Laspeyres and
Paasche indices, reads

P p y p y
p p

p p

F n n nn

N

nn

N

n n nn

N

n

1 1 0 0

1 0 0

1

0

1

0 1 1

1

, , ,( ) =
( )
( )

= =

=

∑ ∑
∑

υ υ

υ υ11

1

1 2

n

N

=∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

Such functional forms are useful for the definition of two-stage indices. Let the
aggregate under consideration be denoted by A, and let A be partitioned arbitrarily
into K subaggregates Ak,

A A A A k kk
K

k k k= = / ≠ ′( )= ′∪ ∩1 0, .

Each subaggregate consists of a number of items. Let Nk � 1 denote the number
of items contained in Ak (k = 1, . . . , K). Obviously N Nkk

K
=

=∑ 1
. Let

p y p yk k k k
1 1 0 0, , ,( )be the subvector of (p1, y1, p0, y0) corresponding to the subaggregate

Ak. Recall that υn
t

n
t

n
tp y≡ is the value of item n at period t. Then

V k Kn
t

n
t

n Ak
≡ =( )

∈∑ υ 1, . . . , is the value of subaggregate Ak at period t, and
V Vt

n
t

n A k
t

k

K
≡ =

∈ =∑ ∑υ
1

is the value of aggregate A at period t.
Let P(.), P(1)(.), . . . , P(K)(.) be price indices of dimension K, N1, . . . , NK

respectively that satisfy the basic requirements. Then the price index defined by

P p y p y P P p y p y V V k Kk
k k k k k k* 1 1 0 0 1 1 0 0 1 0 1, , , , , , , , ; , . . . ,( ) ≡ ( ) =( )( )(78)

is of dimension N and also satisfies the basic requirements. The index P*(.) is called
a two-stage index. The first stage refers to the indices P(k)(.) for the subaggregates
Lk (k = 1, . . . , K). The second stage refers to the index P(.) that is applied to the
subindices P(k) (.) (k = 1, . . . , K). A two-stage index such as defined by expression
(78) closely corresponds to the calculation practice at statistical agencies. All the
subindices are usually of the same functional form, for instance Laspeyres or
Paasche indices. The aggregate, second-stage index may or may not be of the same
functional form. This could be, for instance, a Fisher index.

If the functional forms of the subindices P(k)(.) (k = 1, . . . , K) and the aggre-
gate index P(.) are the same, then P*(.) is called a two-stage P(.)-index. Continuing
the example, the two-stage Laspeyres price index reads

P p y p y P p y p y V VL L
k k k k k

k

K

k
k

K

* 1 1 0 0 1 1 0 0 0

1

0

1

, , , , , , ,( ) ≡ ( )
= =
∑ ∑
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and one simply checks that the two-stage and the single-stage Laspeyres price
indices coincide. However, this is the exception rather than the rule. For most
indices, two-stage and single-stage variants do not coincide.

Two-stage quantity indices are defined similarly.

Indicators

Provided that certain reasonable requirements are satisfied, the continuous
functions P p y p y N1 1 0 0 4, , , :( ) ℜ →ℜ++ and Q p y p y N1 1 0 0 4, , , :( ) ℜ →ℜ++ will be
called price indicator and quantity indicator, respectively. Notice that these func-
tions may take on negative or zero values. The basic requirements comprise: (1)
that the functions exhibit the correct monotonicity properties; (2) that they satisfy
the Identity Test; (3) that they are homogeneous of degree 1 in prices (quantities,
respectively); and (4) that they are invariant to changes in the units of measure-
ment of the commodities. The analog of the Product Test requires that price
indicator plus quantity indicator equals the value difference.

Any function P(p1, y1, p0, y0) or Q(p1, y1, p0, y0), invariant to changes in the
units of measurement, can be written as a function of only 3N variables, namely
the price relatives p pn n

1 0 or the quantity relatives y yn n
1 0 , the comparison period

values υn n np y1 1 1≡ , and the base period values υn n np y n N0 0 0 1≡ =( ), . . . , .
Some simple examples might also be useful here. Consider the Laspeyres price

indicator as function of prices and quantities,

PL p y p y p p y1 1 0 0 1 0 0, , , ,( ) ≡ −( )⋅

and notice that this indicator can be written as a function of price relatives and
(base period) values,

PL
n n n

n

N

p y p y p p1 1 0 0 1 0 0

1

1, , , .( ) = −( )
=
∑ υ

Similarly, the Paasche price indicator

PP p y p y p p y1 1 0 0 1 0 1, , ,( ) ≡ −( )⋅

can be written as a function of price relatives and (comparison period) values,

PP
n n n

n

N

p y p y p p1 1 0 0 0 1 1

1

1, , , .( ) = −( )
=
∑ υ

Finally, the Bennet price indicator is usually defined by

PB p y p y p p y y1 1 0 0 1 0 0 11 2, , , ,( ) ≡ ( ) −( )⋅ +( )

but can be written as

PB
n n n

n

N

n n n
n

N

p y p y p p p p1 1 0 0 1 0 0

1

0 1 1

1

1 2 1 1, , ,( ) = ( ) −( ) + −( )⎡
= =
∑ ∑υ υ
⎣⎣⎢

⎤
⎦⎥
.
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The Bennet price indicator for an aggregate is a simple sum of Bennet price
indicators for its subaggregates:

P PB B
k k k k

k

K

p y p y p y p y1 1 0 0 1 1 0 0

1

, , , , , , ,( ) = ( )
=
∑

and a similar relation holds for quantity indicators.

Appendix B: Decompositions of the Value Added Ratio

Value added is defined as revenue minus the cost of intermediate inputs. Let
the revenue ratio R1/R0 as in expression (7) be decomposed as

R

R
P p y p y Q p y p y

P Q

F F

R R

1

0
1 1 0 0 1 1 0 0

1 0 1 0

= ( ) ( )
≡ ( ) ( )

, , , , , ,

, , ,

(79)

and let the intermediate inputs cost ratio C CEMS EMS
1 0 be decomposed by one- or

two-stage Fisher indices as

C

C
P w x w x Q w x wEMS

EMS

F
EMS EMS EMS EMS

F
EMS EMS EMS

1

0
1 1 0 0 1 1 0= ( ), , , , , , xx

P Q

EMS

EMS EMS

0

1 0 1 0

( )
≡ ( ) ( ), , .

(80)

Then PVA(1, 0) could be defined as a Fisher-type index of the subindices PR(1, 0)
and PEMS(1, 0); that is,

P

R
VA

P
C

VA
P

R
VA

P
CVA

F
R

EMS
EMS

R

1 0
1 0 1 0

1 0

0

0

0

0

1

1
1

,
, ,

,

( ) ≡
( ) − ( )

( )( ) −− EEMS
EMSVA

P
1

1
1

1 2

1 0,

.
( )( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
(81)

The numerator is a Laspeyres-type double deflator, and the denominator is the
inverse of a Paasche-type double deflator. Similarly, QVA(1, 0) is defined as a
Fisher-type index of the subindices QR(1, 0) and QEMS(1, 0); that is,

Q

R
VA

Q
C

VA
Q

R
VA

Q
CVA

F
R

EMS
EMS

R

1 0
1 0 1 0

1 0

0

0

0

0

1

1
1

,
, ,

,

( ) ≡
( ) − ( )

( )( ) −− EEMS
EMSVA

Q
1

1
1

1 2

1 0,

.
( )( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−
(82)

One easily checks that P Q VA VAVA
F

VA
F1 0 1 0 1 0, ,( ) ( ) = . These indices satisfy the

Equality Test, but fail the Consistency-in-Aggregation Test.
The quantity index QVA

F 1 0,( ) was proposed by Geary (1944), though Karmel
(1954) mentions some earlier sources. For studying the behavior of this index the
following relation is useful:
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.(83)

When VAt > 0 then 1 0 0 1− > =( )C R tEMS
t t , . However, the function QVA

F 1 0,( ) is
undefined when Q C R QR EMS EMS1 0 1 00 0, ,( ) ≤ ( ) ( ) or Q R C QR EMS EMS1 0 1 01 1, ,( ) ≥ ( ) ( ).
Moreover, equation (83) implies the following relations:

Q Q Q Q

Q Q Q

R EMS VA
F

R

R EMS VA
F

1 0 1 0 1 0 1 0

1 0 1 0 1

, , , ,

, ,

( ) > ( )⇒ ( ) > ( )

( ) = ( )⇒ ,, ,
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0 1 0

1 0 1 0 1 0 1 0

( ) = ( )

( ) < ( )⇒ ( ) < ( )

Q

Q Q Q Q

R

R EMS VA
F

R

(84)

Karmel (1954) showed that in the case of chained index numbers these relations
might be violated.

Thus there occur situations where Fisher-type indices are undefined. An
alternative decomposition, which does not exhibit this defect, can be developed as
follows.

For the logarithm of the value added ratio we get by repeated application of
the logarithmic mean L(a, b),

ln
, ,

VA
VA

VA VA
L VA VA

R R
L VA VA

C CEMS EM
1

0

1 0

1 0

1 0

1 0
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= −
( ) =

−
( ) −

− SS

EMS EMS

L VA VA
L R R R R

L VA VA

L C C C

0

1 0

1 0 1 0

1 0

1 0

,
, ln

,

, ln
( )

= ( ) ( )
( ) − ( ) EEMS EMSC

L VA VA

1 0

1 0

( )
( ),

.

(85)

Using the decompositions of the revenue ratio and the intermediate inputs cost
ratio, the logarithm of the value added ratio can be expressed as

ln
, ln , ,

,

VA

VA

L R R P Q

L VA VA
L C

R R

EMS

1

0

1 0

1 0

1

1 0 1 0⎛
⎝⎜

⎞
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=
( ) ( ) ( )( )

( ) −

,, ln , ,

,
.

C P Q
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EMS EMS EMS
0

1 0

1 0 1 0( ) ( ) ( )( )
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(86)

This can simply be rearranged to

VA

VA

P

P

Q

Q
R

EMS

R

EMS

1

0

1 0

1 0

1 0

1 0
=

( )
( )

( )
( )

,

,

,

,
,

φ

ψ

φ

ψ(87)

where f ≡ L(R1, R0)/L(VA1, VA0), that is, mean revenue over mean value added,
and ψ ≡ ( ) ( )L C C L VA VAEMS EMS

1 0 1 0, , , that is, mean intermediate inputs cost over
mean value added. Thus, value added price and quantity indices can rather natu-
rally be defined by
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P
P

P
VA
MV R

EMS

1 0
1 0

1 0
,

,

,
( ) ≡

( )
( )

φ

ψ(88)

Q
Q

Q
VA
MV R

EMS

1 0
1 0

1 0
,

,

,
.( ) ≡

( )
( )

φ

ψ(89)

These indices generalize the conventional Montgomery–Vartia indices (see Balk,
2008, p. 87 for their definition). They are Consistent-in-Aggregation, but fail the
Equality Test. The reason is that

φ ψ− =
( ) − ( )

( ) ≤
L R R L C C

L VA VA
EMS EMS

1 0 1 0

1 0 1
, ,

,
,(90)

because L(a, 1) is a concave function.
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