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The main objective of the paper is to demonstrate that a number of widely used multilateral index
numbers for international comparisons of purchasing power parities (PPPs) and real incomes can be
derived using the stochastic approach. The paper shows that price index numbers from commonly used
methods like the Iklé, the Rao-weighted, and an additive multilateral system are all estimators of the
parameters of the country–product–dummy (CPD) model. The advantage of the stochastic approach
is that we can derive standard errors for the estimates of the purchasing power parities (PPPs). The
PPPs and the parameters of the stochastic model are estimated using a weighted maximum likelihood
procedure under different stochastic specifications for the disturbance term. Estimates of PPPs and
their standard errors for OECD countries using the proposed methods are presented. The paper also
outlines a method of moments approach to the estimation of PPPs under the stochastic approach. The
paper shows how the Geary–Khamis system of multilateral index numbers is a method of moments
estimator of the parameters of the CPD model. The paper therefore provides a coherent stochastic
framework for the Geary–Khamis system and derives standard errors of the Geary–Khamis PPPs.

1. Introduction

International comparisons of real income, consumption, investment, and
other national income aggregates rely on purchasing power parities (PPP) com-
piled under the auspices of the International Comparison Program (ICP) con-
ducted by international organizations including the World Bank, OECD,
EUROSTAT, and the United Nations. Purchasing power parities are computed
using price data collected from the participating countries. PPP compilation within
the ICP is undertaken at two levels—at the basic heading level and at a more
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aggregated level.1 At the basic heading level price data are aggregated without any
weights to yield PPPs for various basic headings. The basic heading PPPs are then
aggregated to yield PPPs for higher level aggregates like consumption, investment,
and gross domestic product. The main focus of the paper is on the second step
involving the aggregation above the basic heading level where weights for each
basic heading are available for all the countries.

A range of methods have been proposed in the literature to compute purchas-
ing power parities for aggregation above the basic heading level. Some of the more
popular ones are the Geary–Khamis (Geary, 1958; Khamis, 1970), Iklé (1972),
country–product–dummy (CPD) (Rao, 1990, 2004, 2005; Diewert, 2005), Elteto–
Koves–Szulc (EKS) (see, e.g. Rao, 2004) methods. In the recently completed 2005
round of the ICP, four aggregations methods have been used. At the basic heading
level the CPD method was used in all regions except the OECD–EUROSTAT
region where a modified EKS method was used. For aggregation at higher levels,
the EKS method based on the Fisher binary index numbers was the method used
in most regions. The Geary–Khamis method was recommended as an additively
consistent aggregation method which was used in most regions except in the case
of Africa where the Iklé method was used.

There has been a considerable amount of research on the properties of various
aggregation methods. Balk (1996) compared the analytical properties of more than
10 different aggregation methods using the test approach. Hill (1997) provided a
taxonomy of the aggregation methods. Diewert (1986) provided a framework for
the comparison of various aggregation methods for international comparisons
using the test approach. Despite the focus on the assessment of desirability of
various index number formulae, research on the development of measures of
reliability associated with PPPs computed using different formulae has been con-
spicuously absent.

Around the same time, when the developments in the area of international
comparisons have been taking place, there has been a steady increase in research
focusing on the stochastic approach to the construction of price and quantity index
numbers with the primary aim of providing measures of reliability associated
various index number formulae. Starting with an excellent evaluation of various
approaches to index number construction by Ragnar Frisch (1936) and the con-
sequent work of Theil (1967) on the stochastic approach to index numbers, the
stochastic approach has been slowly developing. More recent interest on this
approach started with the work of Clements and Izan (1981) and Selvanathan
(1989), where the stochastic approach was used in the derivation of the Tornqvist
index. Selvanathan and Rao (1992, 1994) demonstrated that the transitive multi-
lateral index number proposed by Caves et al. (1982), which is essentially an EKS
index constructed using binary Tornqvist indices, could be derived using the
stochastic approach and the indices involved were shown to be generalized least
squares estimators of parameters of an appropriately specified regression model.
Rao and Selvanathan (1992) have shown that the stochastic approach could be

1See the ICP Handbook for more details (http://web.worldbank.org/WBSITE/EXTERNAL/
DATASTATISTICS / ICPEXT / 0,,contentMDK:20962711 ~ menuPK:2666036 ~ pagePK:60002244 ~
piPK:62002388~theSitePK:270065,00.html).
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used in deriving standard errors for PPPs computed using the Geary–Khamis
method when the computations are conditioned on the knowledge of the interna-
tional prices. Thus the approach of Rao and Selvanathan could be considered as
a conditional–stochastic approach.

Along with these developments with respect to aggregation methods for the
compilation of PPPs and the applications of the stochastic approach, there has
been another strand of the stochastic approach gathering momentum. The CPD
method, originally proposed by Summers (1973) as a tool for filling missing data
in the price tableau used in international comparisons, has been found to play a
significant role in the computation of PPPs at levels below and above the basic
heading level. Kravis et al. (1982) recommend the use of the CPD method for the
computation of PPPs below the basic heading level.2 A modified version of the
CPD method, referred to as the CPRD method, takes into account additional
information concerning representativity of the product in the aggregation of price
data below the basic heading level. However, it is only since the work of Rao (2004,
2005) that the CPD method has assumed a role in aggregation above the basic
heading level. Rao (2005) has shown that the CPD method when applied along
with expenditure share weight data (or the weighted CPD) results in PPPs that are
identical to those derived using a method proposed in Rao (1990), which repre-
sents a modified version of the Geary–Khamis method. Following this line of
research, Diewert (2005) has demonstrated that a number of commonly used
methods can be derived using variants of the CPD method.

The main objective of this paper is to take the recent work of Rao and Diewert
further and provide a stochastic framework for the derivation of a range of
aggregation methods within the ICP. In particular, the paper focuses on four
methods—the Geary–Khamis method, the Rao method, the Iklé method, and a
variant of the Iklé method—and demonstrates that these methods can be shown to
be estimators resulting from the use of the weighted maximum likelihood and the
generalized method of moments procedures used in conjunction with the CPD
method and a range of stochastic specifications for the disturbance term.3

The paper is organized as follows. Section 2 establishes the basic notation
and provides an overview of the main aggregation methods considered in this
paper. Section 3 briefly describes the CPD model used in international compari-
sons and shows how different systems are equivalent to the weighted maximum
likelihood estimators of the parameters of the CPD model under different sto-
chastic assumptions. Section 4 is devoted to a discussion on the method of deriv-
ing standard errors for the estimated PPPs. Section 5 focuses on the method of
moments estimation of parameters of the CPD model. In Section 6 we present
estimated PPPs and their standard errors using OECD international comparisons
data for the 1996 benchmark year. The paper concludes with some remarks in
Section 7.

2See Rao (2004) for more details on the CPD method and its properties.
3Derivation of the Fisher-based EKS method, which is the recommended aggregation method, and

its variants is considered in detail in Rao (2009) where the main focus is on the generalized EKS and
CPD methods.
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2. Notation and Selected Multilateral Index Number Systems

Let pij and qij represent the price and the quantity of the j-th commodity in
the i-th country, respectively, where j = 1, . . . , M indexes the countries and
i = 1, . . . , N indexes the commodities. We assume that all the prices are strictly
positive and all the quantities are non-negative, with the minimum condition
that for each i, qij is strictly positive for at least one j; and for each j, qij is strictly
positive for at least one i. Also, we let PPPj denote purchasing power parity or
the general price level in the j-th country relative to a numeraire country and Pi

as the world average price for the i-th commodity. We also need the following
systems of weights wij and wij

* in defining different systems of index numbers.
These weights are defined as
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The expenditure share weights, wij, reflect the relative importance of differ-
ent commodities as measured by the budget shares. However, the second set of
weights, wij

*, may best be described as the share of shares which reflect the
importance of a given commodity i in country j relative to the importance
attached to the commodity in all the countries involved in an international com-
parison. In contrast to wij, wij

*’s add up to unity over j (countries). The use of
these weights arises naturally when defining cross-country or cross-regional
average prices.4

We start with a description of the Geary–Khamis method, which is the first
multilateral system to make use of the twin concepts of purchasing power parities
(PPPj) and international average prices (Pi).

Geary–Khamis Method

The Geary–Khamis multilateral system due to Geary (1958) and Khamis
(1970)5 is a popular method of aggregation for international comparisons as
it provides additively consistent international comparisons. The Geary–
Khamis system is defined by the following system of interdependent system of
equations:

4Suppose we wish to find an average price, m, which minimizes Sj wij (pij - m)2. The objective here
is to find a measure of central tendency of observed prices in different countries or regions which
deviates the least from those commodities which are deemed to be important. As the average is over
countries, the solution for this problem is a weighted average of observed prices in different countries
with weights wij

*.
5Khamis has authored a number of papers that have delved deeply into various properties of the

Geary–Khamis system.
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For a given set of international prices, Pi, purchasing power parity of currency of
country j, is defined as the ratio of value of the commodity bundle of country j
evaluated, respectively, at the national prices, pij, and at the international prices, Pi.
Similarly, for a given set of PPPs, international average prices are defined as the
unit price derived from the total expenditure on commodity i across all countries
and the total quantity of the commodity.

The simultaneous equation system in (2) has a solution that is unique up to a
factor of proportionality. Given observed prices and quantity data from all the
countries, the system is generally solved using an iterative procedure. Kravis et al.
(1982) discuss various properties of the Geary–Khamis method; it remained as the
principal aggregation method for international comparisons until the more recent
phases of the ICP.6 A major criticism of the method surrounds the definition of the
international price, in (2), which is essentially a quantity weighted average of the
observed prices in different countries. As a result the GK international prices tend
to resemble those observed in richer countries and the real incomes of poorer
countries tended to be overstated.7

We consider two aggregation methods which use the same framework as the
Geary–Khamis (GK) method but are designed to address some of the main prob-
lems associated with the GK method.

Rao System for Multilateral Comparisons

Rao (1990) proposed a multilateral system derived through some modifica-
tions to the GK system. The Rao system replaces the quantity-share weights used
in the definition of GK international prices by a system of weights that are based
on expenditure shares. In addition, the system is defined using weighed geometric
averages in the place of arithmetic averages used in the GK system. The system is
defined as:
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(3)

The system defined here is shown to have a non-trivial solution that is unique up
to a factor of proportionality. In the case of binary comparisons, with M = 2, the

6The EKS method is now preferred as the principal aggregation method; the recently completed
2005 round of the ICP is based on the EKS method.

7This is usually referred to as the “Gerchenkron” effect.
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Rao index is similar to the Tornqvist index.8 The use of expenditure share weights
reduced the likelihood of Gerchenkron effect present in the GK system. However,
the Rao system is not additively consistent. We note here that both PPPj’s and Pi’s
are defined as a weighted geometric means of the price ratios, (pij/Pi), and national
prices converted into a common currency unit, (pij/PPPj), respectively.

Iklé System for Multilateral Comparisons

Iklé (1972) proposed an additively consistent system that is similar to the GK
system which also makes use of the twin concepts of PPPs and international prices.
Following Balk (1996), the Iklé (1972) system can be written in a form similar to
equations (2) and (3). The system is given by:
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The Iklé system also has a non-trivial solution which is unique up to a factor of
proportionality. It is useful to note here that international prices, Pi, are defined as
weighted harmonic means of prices observed in different countries after conver-
sion to a common currency unit. Thus there is an element of commonality between
the GK, Iklé, and Rao systems in that they use, respectively, weighted arithmetic,
harmonic, and geometric averages of national prices. It should also be noted here
that the first part of equation (4) defining PPPj’s is indeed identical to that used in
defining PPPj’s in the Geary–Khamis system (2). These PPPj’s are essentially
Paasche-type indices. The Iklé system has not been used in international compari-
sons until the 2005 ICP round.9 It is useful to note here that equations defining the
Iklé system in (4) are harmonic means instead of the geometric means used in
defining the Rao-system.

A New Multilateral System with Expenditure Share Weighted
Arithmetic Averages

Observing the statistical similarity between the Rao and Iklé systems, respec-
tively, based on geometric and harmonic averages of the price relatives and prices,
we consider a system defined using arithmetic averages defined using expenditure
share weights used in the Rao and Iklé systems. The system is simply defined as:
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(5)

The existence and uniqueness of solutions to system (5) is established in
Hajargasht and Rao (2008). While the PPPj’s defined in the Rao system (3) are

8The binary index is essentially weighted geometric mean of price relatives where the weights are
defined as harmonic means of expenditure share weights in the two countries.

9The Iklé method was used in the African region during the 2005 ICP round.
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essentially Cobb–Douglas indices and those defined in the Iklé system are Paasche
indices, no such simple interpretation can be accorded to the definition used for
PPPj’s in equation (5). Therefore, there is no obvious bilateral index of the form in
(5) used to define PPPj. However, this may not be seen as a limitation as the
international prices are not observed and no quantity and expenditure counterpart
for these prices are known. As the current paper is focusing on the stochastic
approach, it is sufficient to observe that the system defined in (5) has attractive
stochastic properties similar to those associated with the weighted CPD and the
Iklé system.

3. The Country–Product–Dummy Model and Multilateral Index
Number Systems

So far we have described four systems of multilateral systems that are strongly
linked in their conceptual framework with the Geary–Khamis system. In the next
section we show that these systems can be derived as estimators of parameters of
the CPD model under different distributional assumptions.

The CPD model was first proposed by Summers (1973) as a method of filling
missing values in price data for international comparisons. It was also the pre-
ferred method of aggregation of price data below the basic heading level in inter-
national comparisons (Kravis et al., 1982). In the 2005 ICP round it has been the
recommended method of aggregation below the basic heading level. The CPD
model is gaining popularity as an aggregation method for aggregation above the
basic heading level (see Rao, 2004, 2005; Diewert, 2005). The CPD model is now
considered as the principal method of aggregation under the stochastic approach.

The CPD model postulates that the observed price of the i-th commodity in
j-th country, pij, is the product of three components: the purchasing power parity
(i.e. PPPj); the price level of the i-th commodity relative to other commodities (i.e.
Pi); and a random disturbance term uij. The CPD model is given by:

p PPPP uij i j ij=(6)

where uij’s are random disturbance terms which are independently and identically
distributed. The parameters of the model (PPPs and Ps) can be estimated from (6).
The original model proposed by Summers (1973) simply transforms the model into
a log-linear form and applies ordinary least squares to estimate the parameters.
The estimated parameters are then used in filling any missing price observations.
Rao (2005) showed that the Rao system defined in (3) is identical to the weighted
least squares estimator of the parameters of the CPD model. This result has
provided a useful link between the CPD model and aggregation methods above the
basic heading level.

In this section we prove that the Rao and Iklé systems, and the new system can
be derived as weighted maximum likelihood estimators of the parameters of the
CPD model under different distributional assumptions for the disturbances, uij.
We consider three different distributional specifications for the disturbances of the
CPD model. In deciding on the specification, we take into consideration the fact
that prices, hence the uij, are positive. Further, it is generally acknowledged that
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prices follow a skewed distribution. A natural choice of a distribution to represent
the disturbances therefore would be the lognormal distribution. There is a consid-
erable amount of literature surrounding the lognormal distribution, including the
possibility of invoking the central limit theorem on observed prices if they are
generated through multiplicative shocks. We also consider the gamma distribu-
tion, which is also commonly used in modeling positive random variables with a
skewed distribution. The gamma distribution is more flexible than the lognormal
distribution, which can represent a variety of distributions. We also use inverse-
gamma distribution where the inverse of the price relatives follow a gamma
distributions. We consider the issue of goodness-of-fit of these distributions in
Section 6.

3.1. CPD Model with Lognormal Disturbances and the Rao System

We consider the case where uij’s are lognormally distributed. This means that
ln uij is normally distributed, in this case with mean equal to zero and variance
equal to s2. In this case we consider the CPD model in its log-linear form:

ln ln ln ln , .p P PPP v v u Nij i j ij ij ij= + + = ( )where ∼ 0 2σ

This log-linear equation can be equivalently expressed in the form of a linear
regression model:

ln * ln lnp D D v P PPPij i i
i

N

j j
j

M

ij i i j j= + + = =
= =
∑ ∑η π η π

1 1

where and(7)

where Di is the i-th commodity dummy variable which takes a value equal to 1 for
commodity i and 0 otherwise; and Dj

* is the j-th country dummy variable which
takes a value equal to 1 for a price observation belonging to country j and equal to
0 otherwise. Thus the explanatory variables in (7) are essentially country and
product dummy variables and hence the model is known as the country–product–
dummy model.

Under the lognormality of the disturbances, uij, in the original model, the
maximum likelihood estimators of the parameters in the log-linear model are the
same as the ordinary least squares estimators of the parameters since the distur-
bances, vij, are normally distributed. Now we consider the weighted regression
model:10

w p w D w D w vij ij i ij i
i

N

j ij j
j

M

ij ijln * .= + +
= =
∑ ∑η π

1 1
(8)

Rao (2005) has shown that the least squares estimators of the parameters in the
weighted CPD model (8) are identical to the solutions of the log-linear equations
obtained from the Rao system in (3). Further, it can be easily shown that, under

10Applying OLS to equation (8) is equivalent to minimizing

w p D Dij ij i ii j jjji
ln *− −( )∑ ∑∑∑ η η

2

 which is the weighted residual sum of squares.
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lognormality of uij and normality of vij the weighted maximum likelihood estima-
tors of the parameters in (7) are the same as the weighted least squares estimators
obtained through (8).

The discussion here establishes the result that under the lognormality of the
disturbances, the weighted maximum likelihood estimators of the parameters are
identical to the PPPj’s and Pi’s from the Rao (1990) system defined in (3).

3.2. Gamma Distribution and the New Index

Here we start with the CPD model and assume that uij’s follows a gamma
distribution11 as follows:

u Gamma r rij ∼ ,( )(9)

where r is a parameter to be estimated. We combine the CPD model in (6) and the
distributional assumption (9) to write:12

p

PPPP
Gamma r rij

i j

∼ , .( )(10)

The choice of the same parameter r for the two parameters of the gamma distri-
bution ensures that the expected value of the disturbance term is equal to 1.13 Now
we outline the weighted maximum likelihood method and establish the required
equivalence.

Our purpose here is to estimate parameters (i.e. Pi, PPPj, and r) using a
maximum likelihood procedure. From the definition of the gamma density func-
tion we can easily show that
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Therefore the log of density function can be written as:

LnL r r r r p P r PPP r
p r

PPPPij ij i j
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i j

∝ − ( )+ −( ) − − −ln ln ln ln ln .Γ 1(12)

We can proceed with this (log-)density function and obtain estimates of the param-
eters of interest using the standard maximum likelihood procedure, but we would
like to incorporate the weights into the model as well. Use of weights is consistent
with the standard index number approach of weighting price relatives by their

11The choice of the gamma distribution is guided by the fact that observed prices, after conversion
to a common currency, have a skewed distribution. The assumption of lognormal distribution also
implies a skewed distribution for prices.

12One may notice the close association of the proposed model to what is known as a generalized
linear model with gamma distribution. A generalized linear gamma regression may be defined as yi/xib
~ Gamma(r,r) (see McCullagh and Nelder, 1989). Our model is a non-linear version of such a model.

13For further details on the lognormal, gamma, and inverse-gamma distributions used here, the
reader is referred to Johnson et al. (1994).
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expenditure shares. This is also the approach used by Rao (2005) where the
weighted least squares method is employed.

One way of affecting this approach is to use a weighted likelihood estimation
procedure. The weighted likelihood function is defined as

WL Lij
w M
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N
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==
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Note that the above function may not represent a multivariate density function.
Therefore, we do not interpret the estimation procedure as a maximum likelihood
procedure. We rather interpret it as an M-estimation procedure (for more on
M-estimators and their properties, see Wooldridge, 2002, chapter 12; Cameron
and Trivedi, 2005, chapter 5).

Maximization of this objective function is not particularly difficult. The only
potential problem is the presence of a gamma function in the likelihood function;
however, most of the existing software, such as LIMDEP and GAUSS, can handle
maximization of the functions containing gamma functions fairly easily.

The first order conditions from maximization of the above likelihood function
are given by:
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There are M + N + 1 first order conditions in as many unknown PPPj (j = 1,2, . . . ,
M), Pi (i = 1,2, . . . , N), and r. After some algebraic manipulations, we can rewrite
the above sets of equations as

P
p w
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The third equation simplifies to this form using the fact that taking sum over i in

the second equation gives
p w

PPPP
Mij ij

i jj

M

i

N

==
∑∑ =

11

. We observe that the first two equa-

tions in (16) are the same as the system of equations we introduced as the new
system defined in (5); these equations do not depend upon the value of r.

Given Ps and PPPs (the existence and uniqueness of which have been proved
elsewhere), it can be shown that there is a unique positive “r” which solves the third

equation. To see this, note that
∂
∂

( ) −
r

r rln lnΓ is an increasing and continuous

function defined over positive values of “r” and its range changes from -• to 0.
Now if we show that the right-hand side of the third of (16) is always negative, the
claim follows from a mean-value theorem. To prove the negativity, note that we
can write

ln ln
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The argument in the left is just the right-hand side of the third equation in (16). The
inequality follows from geometric–arithmetic mean inequality.

Thus we have shown that the new multilateral system based on weighted
arithmetic averages is identical to the weighted maximum likelihood estimator of
the CPD model if the disturbances follow a gamma distribution with both the
parameters set equal to each other.14

3.3. Inverse-Gamma Distribution and the Iklé Index

We follow the same approach as in Section 3.2 in the derivation of the Iklé
index from the CPD model. In particular we show the weighted maximum likeli-
hood estimator of the parameters of the CPD model when the disturbances follow

14It is possible to use differing parameter values in the gamma (r,r) distribution. However, in that
case the expected value would be different from one.
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inverse-gamma distribution. In order to use the inverse-gamma distribution, we
rewrite the CPD model in (6) slightly differently. We use the reciprocal of the price
and obtain:

1 1
p PPPP

u
ij i j

ij=(17)

where uij’s are random disturbance terms which are independently and identically
distributed, and as before they are assumed to follow a gamma distribution:15

u Gamma r rij ∼ ,( )(18)

where r is a parameter to be estimated. The model in equation (17) differs from the
model in equation (10) mainly in the specification of the disturbance term and how
it enters the equation. One of the possible advantages of this model is that we do
not have the inverse relationship between variance of pij and wij. We combine (17)
and (18) to write:
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Following the same procedure as we used in Section 3.2, we may obtain the
likelihood function as
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Taking derivative with respect to PPP and P yields the Iklé system of equations

1
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(21)

Thus we have shown that the Iklé system is the same as the weighted likelihood
estimators of the parameters of the CPD model under the assumption of inverse-
gamma for the disturbances.

Results shown in Sections 3.1 to 3.3 establish that the Rao and Iklé systems,
and the new system are all weighted maximum likelihood estimators of the

15Since the disturbance term in (17) is the reciprocal of the disturbance term in the original CPD
model (6), the assumption in (18) is same as the assumption that disturbance term in (6) follows
inverse-gamma distribution.
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parameters of the CPD model that are distinguished by the differences in the
distributions of the disturbance of the CPD model. Therefore, we have been able
to show that all these index numbers belong to a class of index numbers based on
the stochastic approach. Unfortunately, we have not been able to identify a
distribution for the disturbance term under which the Geary–Khamis method
could be derived. However, we show in Section 5 that the GK system can also be
derived from the CPD model by showing that the GK system is equivalent to the
method of moments estimator of the parameters of the CPD models. We will
return to this shortly.

4. Computation of Standard Errors

We have emphasized that the advantage of the stochastic approach to index
numbers and the use of CPD is to obtain standard errors for estimated indices.
One might think that standard errors from conventional weighted least squares or
weighted maximum likelihood provided by standard software can be used for this
purpose. But such standard errors are not valid if these are not derived using
proper expressions. Since we have shown that various systems of multilateral index
numbers can be derived using the CPD model, it remains for us to derive the
expressions to be used in deriving the standard errors. In order to derive standard
errors for PPPs and international prices, Pi’s, we make use of results available for
M-estimators discussed in econometric literature.

We start with a general discussion of M-estimators and their variances. An
M-Estimator q̂ is defined as an estimator that maximizes an objective function of
the following form (see, e.g. Cameron and Trivedi, 2005):

Q
N

h yN i i i
i

N

q q( ) = ( )
=
∑1

1

, ;x(22)

where yi and xi represent dependent and independent variables, respectively. q is
the vector of parameters to be estimated. The function Q is the same as the
weighted likelihood function in logarithmic form given in equations (15) and (20).

Following Cameron and Trivedi (2005), it has been shown that q̂ has the
following asymptotic distribution:

N dˆ ,q q−( )⎯ →⎯ ℵ[ ]− −
0 0 0 00 1 1A B A
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In practice, a consistent estimator can be obtained as:

VAR A BAˆ ˆ ˆ ˆq( ) = − −1
N

1 1(24)

where

ˆ
ˆ
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∂
∂ ′∂=
∑1

1N
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i

N 2

q q q
(25)

ˆ .
ˆ ˆ

B =
∂
∂

∂
∂ ′=
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1N

h hi i

i

N

q qq q
(26)

In some special cases like the maximum likelihood or non-linear least squares with
homoscedastic errors, it can be shown that A B0

1− −= 0. In such cases the variance
formula can be simplified to

VAR Aˆ ˆ .q( ) = − −1
N

1(27)

Many software programs use this formula as their default standard error formula.
But in case of the problem studied in this paper, this formula leads to incorrect
standard errors for the estimated parameters and we must use the more general
formula given by (23).

For example, if we apply formula (27) to the estimates from a weighted least
squares regression, we obtain following formula:

VAR X Xq̂ W( ) = ′( )−�σ 2 1
(28)

where W is a diagonal matrix with weights on its diagonal which coincide with the
standard formula for weighted least squares when there is heteroscedasticity in
error term. However, the correct formula for the variance estimator to be used in
the case where we used weighted least squares when the disturbances are homosce-
dastic, is given by:

VAR X X X X X Xq W W W W( ) = ′( ) ′ ′( ) ′( )− −σ̂ 2 1 1(29)

where σ̂ 2 is obtained from the unweighted regression. This formula is similar to
that suggested in Rao (2004) for the computation of standard errors for the
weighted CPD method.

The results presented here are quite useful in conducting statistical inference
on the unknown PPPs. The estimated PPPs are asymptotically normally distrib-
uted. Therefore, it would be possible to obtain confidence intervals and to conduct
hypothesis tests using standard normal tables. It would be useful if simple
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algebraic expressions of the standard errors associated with PPPs are derived.16

The expression in (29) implies that the magnitude of the standard errors would
depend upon the estimate of variance s 2. From the specification of the CPD
model, large values of s 2 imply large deviations from the law of one price implicit
in the CPD model.

In Section 6 we present estimated PPPs based on price data from the OECD
and using different methods along with their standard errors derived under differ-
ent stochastic assumptions discussed in Section 3. Before that we turn to the
derivation of the GK system from the CPD model.

5. Derivation of the Geary–Khamis System Using the CPD Model

We recall that the Geary–Khamis system in equation (2) is given by:

PPP
p q

Pq
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=
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∑
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1

1

for i = 1,2, . . . N.

In the past there have been several attempts to cast the GK method in a stochastic
framework so that standard errors can be derived.

One of the early attempts was due to Rao and Selvanathan (1992) who
used a stochastic specification where PPPj’s are identified as parameters of a
regression model where the international prices Pi’s are assumed to be known.
Thus the standard errors are conditional on the full knowledge of the interna-
tional prices. But in practice, international prices are also unknown and deter-
mined simultaneously with the unknown PPPs. Recently, Diewert (2005) derived
the Geary–Khamis bilateral index using the stochastic approach based on the
CPD method for the case of binary comparisons. The Diewert approach also
makes use of several steps which makes it difficult to derive the standard errors
for the PPPs.

In this paper, we show that the Geary–Khamis PPPs and the international
prices, Pi’s, in the multilateral case are the method of moments estimators of the
parameters of the CPD model in equation (6) discussed in Section 3.1. In particu-
lar, the approach used here recognizes the non-additive nature of the CPD model
and proposes the method of moments approach. In Section 5.1 we discuss how a
non-additive non-linear system of equations can be estimated using the method of
moments. Section 5.2 applies this approach to the CPD model, which is a non-
additive model, and shows how the arithmetic and the Geary–Khamis indices can
be derived using this approach. A numerical illustration which presents the GK
PPPs and their standard errors is included in Section 6.

16Derivation of closed form expressions for the standard errors is fairly involved and beyond the
scope of this paper.
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5.1. Estimation of Non-Additive Non-Linear Models

In establishing a relationship between the GK method and the CPD model,
we consider the CPD model as a non-additive model and then look at the problem
of estimation of the parameters of the non-additive model using the method of
moments estimation technique.

Consider the following non-linear regression model:

r y ui i i, ,x b( ) =(30)

where yi represents the dependent variable, ui represents the random errors, r(yi, xi,
b) is a non-linear function, xi is a 1 ¥ L vector, b is a K ¥ 1 column vector, and
i = 1, . . . , N indexes the number of observations; we also assume that E(ui) = 0.
We make a further assumption that the model is non-additive,17 which means it
cannot be written as

y g ui i i− ( ) =x , b .(31)

Parameters of an additive model can be estimated using a non-linear least squares
approach, but it can be shown that the use of least square criterion does not
provide consistent estimators for non-additive models (see, e.g. Cameron and
Trivedi, 2005).

How can a non-additive model be estimated? We consider the method of
moments estimation of the parameters of the model. An obvious starting point is
to base the estimation of parameters in (31) on the moment conditions E(X′u) = 0,
where X is the N ¥ L matrix containing xi’s and u is an N ¥ 1 vector containing ui’s.
However, other moment conditions can be used. More generally we can base the
estimation on the following K moment conditions:

E R x u 0, b( )′( ) =(32)

where R is an N ¥ K vector of functions of X and b. By construction there are as
many moment conditions as parameters. Therefore, a method of moment estima-
tor can be obtained by solving following sample moment conditions:

1
N

R X r y X 0, , , .ˆ ˆb b( )′ ( ) =(33)

This estimator is asymptotically normal with variance matrix

Var MM
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆb( ) = ′⎡⎣ ⎤⎦ ′ ′⎡⎣ ⎤⎦

− −
σ 2 1 1

D R R R R D(34)

where ˆ , ,

ˆ

D
r y X

=
∂
∂ ′

( )b
b b

, ˆ , ˆR R X= ( )b and ˆ
ˆ ˆ

σ 2 = ′
u u
N

.

17It is easy to check that the CPD model is a non-additive model using the definition.
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The main issue in the above estimation problem is the specification of the
moment conditions defined by R(X,b). It has been shown (see, e.g. Davidson and
MacKinnon, 2004) that the most efficient choice for the moment conditions is

R X
r y X

X,
, ,b b

b
( ) = ∂ ( )′

∂

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

* .E(35)

In general the expectation term in the right-hand side cannot be derived unless we
make very strong distributional assumptions, but fortunately for the type of
models we consider in this paper it is tractable.

5.2. Estimation of PPPs Under the Optimal Choice of Moment Conditions and
Standard Errors Using MOM

To obtain PPPs and their standard errors based on an the CPD model using
MOM, we follow Rao (2005) and Diewert (2005) again to postulate that the
observed price of the j-th commodity in the i-th country, pij, is the product of three
components: the purchasing power parity (i.e. PPPj); the price level of the j-th
commodity relative to other commodities (i.e. Pi); and a random disturbance term
as follows:

p PPPP uij i j ij= *(36)

where uij ∗s are random disturbance terms which are independently and identi-
cally distributed.18 We also assume that E uij( * ) = 1. The model in equation (36) can
be written in the following equivalent form:

p

PPPP
uij

i j
ij− =1(37)

with E(uij) = 0. This is now in the form of a non-additive non-linear regression
model as introduced in the previous section, and therefore we can use the estima-
tion method in the previous section. Using the theory discussed in the previous
section, the equations to be solved can be written as

1
nm

′ =R r 0(38)

where R′ is an (n + m) ¥ (n ¥ m) matrix; it can be shown that the most efficient
choice of R according to (35) is defined as follows:

18We use uij
* instead of uij in order to facilitate the specification of the non-additive model shown

in (37).
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and

r
p

PPPPij
ij

i j

= −1(39)

considering the fact that

E
p

PPPP
ij

i j

⎡

⎣
⎢

⎤

⎦
⎥ = 1.(40)

We can write the equations in the following matrix form:

We can write the normal equations as follows:
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.(41)

According to the theory in the previous section, the variance for the estimated
price indexes can be obtained by

Var MM
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆb( ) = ′⎡⎣ ⎤⎦ ′ ′⎡⎣ ⎤⎦

− −
σ 2 1 1

D R R R R D(42)

where

So far we have not introduced weights in our price index. One way of doing this is
to define the R matrix as follows:
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This definition for the R matrix results in the following system of equations which
coincides with the weighted version of the arithmetic index:

PPP
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∑

∑
1

1

*
.(43)

This set of equations is the same equations that defined the new system based on
the expenditure share weighted arithmetic means to define PPPs and Pi’s. This is
exactly the arithmetic index introduced earlier in equation (5) in Section 2.

5.3. Derivation of the Geary–Khamis PPPs and Standard Errors

Consider again estimation of the following non-additive CPD model:

p

PPPP
uij

i j
ij− =1 .

As we discussed in the previous sections, we can base our estimation on the
following moment conditions:

E ′[ ] =R u 0

and accordingly following sample moment conditions

1
nm

′ =R r 0.

Different definitions for R can lead to different estimators. As long as R is not
correlated with u the estimator is consistent. We make a slight modification in the
definition of R in the previous section as follows:
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It is easy to see that R is not correlated with u because P and PPP are constant
parameters of the model to be estimated. (Note also that Pi’s are close to one and
therefore this matrix does not differ very much from the one in the last section.)
This definition for R results in the following equations:
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But this is the unweighted Geary–Khamis price index. We can derive the quantity-
weighted price index by defining

This results in the following system of equations:
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which is identical to the equations that define the Geary–Khamis system given in
equation (2) in Section 2. Thus it is clear that the GK PPPs and Pi’s are the method
of moments (weighted) estimators of the parameters of the CPD model.
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As usual the standard errors for the estimated indexes can be obtained using
the following formula:

Var MM
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆb( ) = ′⎡⎣ ⎤⎦ ′ ′⎡⎣ ⎤⎦

− −
σ 2 1 1

D R R R R D

where Dij’s are the same as in the previous section.
The result established in this section provides for the very first time a proper

derivation of the GK system using a stochastic approach. The MOM estimator
derived here relates to the estimation of both PPPs and Ps simultaneously. This is
more general than the partial approach used in Rao and Selvanathan (1992). This
result also provides a method of estimating standard errors for PPPs from the GK
method.

6. Empirical Application Using OECD Data

In this section we present estimated PPPs and their standard errors derived
using the three methods of aggregation discussed in the paper and the 1996
OECD data. The price information that we have is in the form of PPPs at
the basic heading level for 158 basic headings, with the US dollar used as the
numeraire currency. In addition we have expenditure, in national currency
units, for each basic heading in all the OECD countries. These nominal expen-
ditures provide the expenditure share data used in deriving the weighted
maximum likelihood estimators under alternative stochastic specification of the
disturbances.

For weighted CPD estimates we have used the weighted least squares meth-
odology as explained in Rao (2005). For Iklé and the new index we used the
weighted maximum likelihood approach described in Section 2.

Results shown in Table 1 clearly demonstrate the feasibility and comparabil-
ity of the new approaches to the estimation of PPPs. As can be seen, PPPs and their
standard errors based on CPD, Iklé, and the new index are all numerically close to
each other. An additional phenomenon to note is that the PPPs based on the
weighted CPD (or from the lognormal specification for the disturbances) appear to
be bounded by PPP estimates from the new index and the Iklé index. However, this
is only a coincidence and when a different country (e.g. Australia) is used as the
reference country, no special patterns emerged.

The PPPs reported here, from different methods, are very similar to each
other. As the countries selected are developed OECD countries, it is generally
acknowledged that PPPs are usually close to the market exchange rates. The
relative precision of the estimated PPPs can be compared by looking at the ratio
of the standard error to the estimated PPP. These ratios are generally higher for
lower income countries within the OECD, such as Turkey and Portugal, and
countries with relatively higher price levels, such as Switzerland and Norway.
However, further analysis and work involving countries at various stages of devel-
opment is necessary before any concrete conclusions can be drawn. Such work
along with the derivation of analytical expressions for the standard errors is a topic
for future research.
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Table 2 shows the estimated PPPs and their standard errors based on: (i) the
arithmetic index using MOM; and (ii) the Geary–Khamis method derived as an
MOM estimator. The standard errors of the arithmetic index based on the
maximum likelihood estimation (MLE) approach discussed in Sections 4 and 5 of
this paper are also presented.

The results presented in the table are consistent with prior expectations. The
standard errors for the arithmetic index using the generalized method of moments
(GMM) show that this is slightly more efficient than MLE. This could be because
GMM is robust to the choice of distribution for the error term; the standard errors
for the Geary–Khamis using the method proposed here are higher than the other
two, which is expected because it is not the most efficient estimator based on our
stochastic specification.

Which Disturbance Specification?

It is clear from the empirical results presented here that it is possible to derive
PPPs from different methods by simply varying the distribution of the disturbance
term. Or alternatively, use a method of moments estimator which does not rely on
any distributional assumptions.

It is useful to review the differences between different distribution specifica-
tions. The disturbances are positive and skewed random variables. While

TABLE 1

MLE Estimates of PPPs and SEs

Country

MLE Estimates

New Index CPD Iklé

PPP SE PPP SE PPP SE

GER 1.887 0.136 2.034 0.144 2.187 0.147
FRA 6.092 0.429 6.554 0.455 7.035 0.466
ITA 1,425.96 109.727 1,504.02 115.509 1,584.381 119.196
NLD 1.921 0.150 2.056 0.155 2.205 0.156
BEL 35.491 2.577 37.890 2.698 40.450 2.728
LUX 33.578 2.488 35.816 2.618 38.191 2.700
UK 0.603 0.043 0.642 0.044 0.682 0.045
IRE 0.637 0.051 0.669 0.055 0.696 0.060
DNK 8.525 0.586 9.131 0.615 9.762 0.631
GRC 180.470 13.452 188.482 13.891 196.640 14.005
SPA 112.414 8.304 118.546 8.606 124.799 8.738
PRT 126.043 10.400 129.037 10.994 130.317 12.002
AUT 12.770 0.881 13.730 0.928 14.728 0.948
SUI 2.050 0.168 2.183 0.177 2.320 0.180
SWE 9.424 0.686 10.075 0.720 10.758 0.742
FIN 6.159 0.432 6.598 0.453 7.070 0.462
ICE 86.828 7.000 89.541 6.975 92.329 6.810
NOR 8.807 0.684 9.238 0.736 9.642 0.764
TUR 6,304.23 579.128 6,321.42 544.907 6,357.003 506.991
AUS 1.264 0.099 1.333 0.103 1.407 0.104
NZL 1.464 0.111 1.530 0.113 1.596 0.115
JAP 182.031 13.622 187.429 14.282 192.392 14.780
CAN 1.168 0.090 1.229 0.094 1.295 0.096
USA 1.0 1.0 1.0

Review of Income and Wealth, Series 56, Special Issue 1, June 2010

© 2010 The Authors
Journal compilation © International Association for Research in Income and Wealth 2010

S54



lognormal is a standard specification used in economics applications, use of
gamma and other distributions is now commonplace within the class of general-
ized linear models. We make the following points regarding these distributions.
For large values of r, the gamma and lognormal distributions are pretty close and
they converge to each other as r gets larger. Therefore, for many practical prob-
lems with large values of r, it may not matter which one to choose, but for smaller
values of “r” they can be different. For such values of “r,” gamma tends to give
most of the mass to smaller values of the stochastic variable.

For a sample drawn from a gamma distribution, the maximum likelihood
estimator for the mean is the “arithmetic mean,” and for sample drawn from a
lognormal distribution it is the geometric mean. As expected, for most values of
“r” these two become pretty close, but for smaller values of “r” the two averages
can be very different.19

We have not yet established a formal test procedure which can be used in
selecting a distribution from lognormal, gamma, and inverse-gamma distributions
based on the observed price data. In order to provide an intuitive explanation as to
how we may choose between these distributions, we make a comparison of the
residuals from the CPD model in (2) with different specifications. We simply run

19We conducted a small simulation experiment where we generated a sample of 1000 from a
gamma distribution with r = 1 and calculated the arithmetic mean which was close to one (as expected),
but the geometric mean was close to 0.5. In this case the use of lognormal could severely bias the
estimates.

TABLE 2

Estimates of PPPs and SEs

Arithmetic
Index

MOM SE
Arithmetic

MLE SE
Arithmetic GK Index MOM SE GK

GER 1.887 0.109442 0.136 2.08316 0.15474
FRA 6.092 0.606755 0.429 6.679491 0.516194
ITA 1,425.96 79.25337 109.727 1,537.168 129.5046
NLD 1.921 0.11156 0.150 2.032161 0.156602
BEL 35.491 1.946125 2.577 38.70436 2.700867
LUX 33.578 2.454269 2.488 36.7877 3.446165
UK 0.603 0.036311 0.043 0.679564 0.053761
IRE 0.637 0.037709 0.051 0.657754 0.056569
DNK 8.525 0.591807 0.586 9.457703 0.872669
GRC 180.470 9.271153 13.452 187.3352 13.14857
SPA 112.414 7.726502 8.304 122.1712 10.59001
PRT 126.043 6.56711 10.400 124.7745 9.307088
AUT 12.770 0.731266 0.881 14.40264 1.098328
SUI 2.050 0.146331 0.168 2.220059 0.179608
SWE 9.424 0.726701 0.686 10.56069 1.024583
FIN 6.159 0.404593 0.432 6.895726 0.638499
ICE 86.828 6.142211 7.000 90.02853 9.473389
NOR 8.807 0.457666 0.684 9.119335 0.764748
TUR 6,304.23 393.9744 579.128 5,967.556 549.1221
AUS 1.264 0.08598 0.099 1.351173 0.106996
NZL 1.464 0.106893 0.111 1.545069 0.140098
JAP 182.031 12.52263 13.622 179.0048 15.83708
CAN 1.168 0.085695 0.090 1.271441 0.115112
USA 1.0 1
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the CPD model as a log-linear model in prices and compute the residuals. These
residuals are presented in Figure 1, labeled as CPD. On the same graph, we also
plot the disturbances drawn from a lognormal distribution and from a gamma
distribution (r,r).20

The density function under the CPD model simply represents the residuals
derived using the OLS estimators of the parameters of the CPD model without any
distributional assumptions. The distributions implied by lognormal and gamma
distributions are also presented. From the figure it appears that the gamma dis-
tribution provides a better approximation to the disturbances from the OLS. An
implication of this is that if we were to select the gamma distribution to represent
the distribution of the disturbances of the CPD model, then we should be using the
arithmetic version of the GK system using expenditure share weights. However,
this is an issue that requires further research.

7. Concluding Remarks

The paper has proposed a straightforward extension to two known multilat-
eral methods due to Iklé (1972) and Rao (1990). The new index uses weighted
arithmetic averages to define PPPs and international prices, Pi’s, instead of har-
monic and geometric averages used, respectively, in the Iklé and Rao specifica-
tions. The paper has also established that all three indexes can be shown to be the
weighted maximum likelihood estimators of the CPD model when the distur-
bances follow lognormal, gamma, or inverse-gamma distributions, respectively.
Derivation of the indices using the stochastic approach makes it possible to derive
appropriate standard errors for the Iklé index and the new index proposed here.
Further, given that all these indexes are generated by the same CPD model, but

20In plotting the gamma distribution we make use of the estimated value of r equal to 12.
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Figure 1. Distribution of the Disturbances of the CPD Model
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with alternative disturbance specifications, it allows us to test for the distributional
assumptions underlying these three methods and use such specification tests to
choose between alternative methods. Further work is necessary to see whether it is
possible to explore other specifications for the distribution of the disturbance and
the index number formulae resulting from such specifications. The paper also
outlines the approach necessary to compute the true standard errors of PPPs when
weighted maximum likelihood methods are used.

The paper has also shown that the commonly used Geary–Khamis PPPs can
be derived from the CPD model and the stochastic approach described here. In
particular, the GK PPPs are shown to be weighted method of moments (MOM)
estimators of the parameters of the CPD model.
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