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After decades of intensive research dedicated to efficient and flexible parametric statistical
distributions, the lognormal distribution still enjoys, despite its empirical weaknesses, widespread
popularity in the applied literature related to poverty and inequality analysis. In the present
study, we emphasize the drawbacks of this choice for the calculation of the elasticities of
poverty. For this purpose, we estimate the growth and inequality elasticities of poverty using
1,132 income distributions, and 15 rival assumptions on the shape of the income distributions.
Our results confirm that the lognormal distribution is not appropriate in most cases for the analysis
of poverty: the magnitude of the elasticities is generally overestimated and the estimation of the
relative impact of growth and redistribution on poverty alleviation is biased in favor of the growth
objective.

1. Introduction

When the Millenium Development Goals (MDGs) were defined in the
late 1990s, the international community explicitly made poverty alleviation as
the prime objective of development policies. However, how best this goal
could be achieved is still a matter of discussion. From an analytical point of
view, poverty in a given country depends on both the mean income and the
degree of inequality within its population.1 As a result, poverty variations are
associated with changes in per-capita income and inequality. Such a simple
arithmetic statement is at the heart of the consensus that emerged in the
1970s concerning the promotion of growth-with-redistribution policies (Chenery
et al., 1974). It also means that the effects of any macro-economic variable
(institutions, trade openness, financial development . . .) on poverty are only
channeled through growth and redistribution. The knowledge of the linkages
between poverty, on one hand, and growth and redistribution, on the other
hand, are thus a critical prerequisite to the design of an efficient anti-poverty
strategy.

However, on the spirit of the Washington consensus, many studies (Gugerty
and Roemer, 1997; Ravallion 2001; Dollar and Kraay 2002) have first attempted
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to show that growth was the main driver of observed poverty alleviation outcomes
and, consequently, that policy-makers should principally focus on growth-
promoting objectives. This view is perfectly illustrated by the 2005 World
Development Report (World Bank, 2005) that extensively relies on the
investment–growth–poverty causal relationship. As the practices of the biggest
multilateral institutions changed little, this polarization on the growth–poverty
relationship led some authors to the conclusion that the MDGs have only resulted
in purely rhetorical changes. This feeling was reinforced by some authors’ efforts
to justify growth-oriented policies in terms of poverty alleviation. However, the
efficiency of these policies has been greatly debated. Whereas Dollar and Kraay
(2002) argued that the income of the poor grows at the same rate as the mean
income, many economists get involved in the estimation of a mean value for the
growth elasticity of poverty, in particular for the realization of simulations exer-
cises (Collier and Dollar, 2001). It is worth noting that the estimated values are in
a wide range. For instance Besley and Burgess (2003) suggest using a value of -0.7,
whereas Bhalla (2004) finds a mean elasticity of -3.4. The difference is economi-
cally significant since the achievement of the objective of halving extreme poverty
between 1990 and 2015 under the first result implies a rate of growth which is five
times larger than the one corresponding to the elasticity calculated by Bhalla
(2004).2

Because these studies focused on growth, and paid little attention
to inequality, recent studies (including Bourguignon, 2003; Heltberg, 2004;
Ravallion, 2005) have emphasized the fundamental role of distribution in the
determination of poverty variations. Their main message is that growth
reduces poverty more if income distributions are less unequal. This effect is of
course complemented by the potentially beneficial direct effect of redistribution
on poverty. Lopez and Servèn (2006) show that the contribution of inequality
reduction to poverty alleviation is higher in richer countries. Consequently,
redistribution policies and distributional consequences of growth-promoting
policy measures should not be ignored and the diminution of inequalities should
be considered as an intermediate objective of poverty alleviation policies in the
same way as per-capita income growth.

Nonetheless, even if there is general agreement on the necessity of taking into
account the distribution issue in poverty analysis, no consensus has emerged about
the relative contributions of growth and inequality reduction to poverty allevia-
tion. Considering factors that both stimulate growth and narrow inequality, it may
be of little interest to look for these relative contributions, as their impact on
poverty is most likely to be positive. However, those factors for which the growth
and inequality effects work in opposite directions—trade openness and financial
development are frequently accused of contributing to development at the expense

2According to Besley and Burgess (2003), halving extreme poverty requires income per capita to
grow at an annual rate of 3.8 percent between 1990 and 2015 in the developing world. With the
elasticities suggested by Collier and Dollar (2001) and Bhalla (2004), the needed growth rates are only
1.4 and 0.8 percent, respectively.
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of widening inequalities—it is crucial to know more about the trade-off faced by
policy-makers (McKay, 1997).3

The calculation of growth and inequality elasticities of poverty is an elegant
way to present the relationships between growth, inequality and poverty, and to
assess the terms of this growth–inequality trade-off. From a practical point of
view, a direct estimation of these elasticities for different values of mean income
and different degrees of inequality can easily be achieved under the assumption
that the observed distributions can be described by a known statistical distri-
bution. In most studies (Bourguignon, 2003; Epaulard, 2003; Kalwij and
Verschoor, 2005; Lopez and Servèn, 2006) the lognormal distribution is used.
This can be seen as a peculiar choice since these authors choose to set aside all
the 20th century debates on the statistical distributions of income.4 Since the late
19th century and the pioneering works of Pareto, research has been extremely
active to find the functional form that best fits the observed distributions. Prac-
tical considerations and the considerable influence of the study of Aitchison and
Brown (1957) may still explain the current popularity of the lognormal distri-
bution, but cannot justify its systematic use in empirical studies. Many authors
have pointed out its empirical weaknesses and have suggested alternative func-
tional forms (Maddala and Singh, 1976; Dagum, 1977) or the generalized beta 2
distribution (McDonald, 1984; Jenkins, 2009).5 For instance, Bandourian et al.
(2002) showed that the lognormal distribution was outperformed by many alter-
native functional forms, even within the set of two-parameter distributions, for
a relatively large sample of developed countries. If the lognormal distribution
is such a poor approximation of observed income distributions, elasticities
obtained through the lognormality hypothesis are then questionable. In particu-
lar it is necessary to ask whether relying on the normality assumption is not a
source of bias when we try to appreciate the growth–inequality trade-off in the
context of poverty alleviation.

In the present paper, we intend to shed light on the consequences of the use
of a potentially inadequate distributional hypothesis for the estimation of
growth and inequality elasticities of poverty. For this purpose we estimate these
elasticities for a sample of 1,132 income distributions in 120 countries between
1960 and 2005 using 15 alternative statistical distribution assumptions. Our
results confirm the intuition that moving to more flexible functional forms dra-
matically improves the quality of the fit, and show that the corresponding elas-
ticities differ from the one obtained under the lognormal hypothesis. Moreover,
we find that the estimated elasticities under the lognormal assumption tend
to overestimate the “real” value of these elasticities, and may cause a bias

3Dollar and Kraay’s (2002) results suggest that the growth process is distribution-neutral on
average. This feeling is reinforced by the relative stability of inequality measure over time (Li et al.,
1998). However, as emphasized by Kanbur and Lustig (2000), if the combination of different policies
is generally distribution-neutral, it may not be the case for each factor considered independently.

4In the present paper, the expression “statistical distributions” corresponds to parametric statis-
tical distributions. It should not be confused with observed distributions.

5Among the most widely known attempts to propose an alternative functional form, we can cite
Stacy (1962), Metcalf (1969), Thurow (1970) and Mount and Salem (1974). Kleiber and Kotz (2003)
also provide a comprehensive survey.
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against poverty-reduction strategies and in favor of growth intermediate
objectives.

The paper is organized as follow. The next section introduces the methodol-
ogy used for the estimation of the desired growth and inequality elasticities of
poverty. The data and the raw results are presented in Section 3. Section 4 is
concerned with the criterion used for the choice of an adequate functional form for
income distributions and Section 5 deals with the drawbacks of the lognormal
hypothesis. Section 6 concludes.

2. Methodology

2.1. Calculation of the Elasticities of Poverty

In the present paper, we focus on the absolute approach of poverty measure-
ment. A common practice is to express poverty measures as nonlinear functions of
the poverty line z, the mean income m, a set of inequality parameters which fully
describes the Lorenz curve L and some parameters which reflect ethical prefer-
ences.6 For instance, the widely used (Foster et al., 1984) class of poverty measures
Pa is defined by:

P
z y

z
f y dy

z

α

α

α=
−( ) ( )∫ , ,

0
0�(1)

where y corresponds to income, f(.) is the income density function and a is a
parameter of inequality aversion. For a = {0,1,2}, Pa is respectively the headcount,
the poverty gap and the squared poverty gap index. If we assume that incomes are
distributed according to a known statistical distribution, a functional form can be
attributed to f(.) and the corresponding Lorenz curve can be fully described using
some reduced set of inequality parameters. With the help of derivative tools, such
an assumption allows a direct estimation of the required elasticities (Bourguignon,
2003). The approach is appealing since the elasticities can be estimated for each
observed income distribution with few information requirements. Moreover,
growth and redistribution effects are orthogonal, and, as shown further below,
inequality elasticities of poverty can be directly compared in cross-section
analysis.

In the present study, we choose to consider the following traditional statistical
distributions: Pareto, lognormal, gamma, Weibull, Fisk, Singh–Maddala, Dagum
and beta of the second kind.7 Each one of these functional forms has been pro-
posed for the estimation of income distributions and successfully tested using
observed income distributions (see Kleiber and Kotz, 2003, for a quite

6See, for instance, the class of decomposable poverty measures defined by Kakwani (1980). For a
comprehensive survey of absolute poverty measures, see Zheng (1997).

7We also performed estimations with the generalized gamma, the beta of the first kind and the
generalized beta of the second kind. In each case, the estimators of the non-linear least-squares were not
convergent because of the existence of multiple local optima. Hence, we dropped these distributions
from the set of tested functional forms. For a closer look at the linkages between all these distributions,
see McDonald (1984).
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comprehensive survey). The corresponding cumulative distribution functions
(c.d.f.) F(.) are presented in Table 1.

The estimation of the parameters of these different functional forms depends
to a great extent on data availability. In the context of cross-section or panel
studies, it is currently very difficult to get a reasonable number of micro-data
income series. Hence, the most common practice is to use the mean income and a
set of inequality measures so as to define a system of m linearly independent
equations for m parameters to be estimated (Bourguignon, 2003). For example,
with two-parameter distributions like the Pareto, lognormal, gamma, Weibull and

TABLE 1

“Classical” Distribution Functions

Name

Cumulative
Distribution

Function Lorenz Curve Scale Parameter
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Notes: F(.) stands for the c.d.f. of the standard normal distribution, c for any constant term,
G(.) for the c.d.f. of the gamma distribution, GG(.) for the c.d.f. of the generalized gamma distribution,
W(.) for the c.d.f. of the Weibull distribution, B1(.) for the c.d.f. of the beta distribution of the first kind,
B2(.) for the c.d.f. of the beta distribution of the second kind, BG2(.) for the c.d.f. of the generalized beta
distribution of the second kind. More details on the last distributions can be found in Kleiber and Kotz
(2003).
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Fisk distributions, the desired parameters can be easily found using the mean
income and the Gini coefficient.8

However, the information requirements increase as the functional form
becomes more flexible. Moreover, with three- (or more) parameter distributions,
the system of equations is often intractable, yet difficult to solve.9 For these
reasons, it is generally more convenient to opt for an approach based on the
estimation of the Lorenz curve corresponding to each distribution. Data availabil-
ity is not a matter of concern since one can easily get some points of the Lorenz
curve for a large number of countries. Moreover, as the number of points is usually
greater than the number of parameters of the chosen functional form, standard
errors can be estimated so as to compute confidence interval for the desired
elasticities of poverty. Since the Lorenz curve does not depend on the mean income
value, another useful feature is that the estimation of the inequality parameters can
be separated from the estimation of the scale parameter. Finally, as criteria based
on prediction errors are necessary to assess the performance of each functional
form (see Section 4), there is a need for degrees of freedom.

The equations of the Lorenz curve corresponding to the aforementioned
“classical” distributions are presented in Table 1. It can be seen that the estimation

8In the case of the lognormal distribution, the system to be solved is:
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where I is the Gini coefficient and m is mean income. It is worth stressing that simplicity is not the
privilege of the lognormal distribution. For instance, using the Fisk distribution yields the following
system:
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9For instance, the parameters of the Singh–Maddala distribution can be estimated using the mean
income m, the Gini coefficient I and the Theil index T:
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where y(.) and B(.) are the digamma and beta functions.
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of the parameters of these different functional forms entails the use of non-linear
estimators that may not be convergent contrary to traditional linear estimators.10

Indeed, their use requires choosing an initial value for each parameter to be
estimated. In the presence of multiple optima, these estimators converge to differ-
ent values depending on the chosen initial values. Thus, it may be difficult to get
the true value of the parameters.

Once the scale and inequality parameters have been estimated, the income and
inequality elasticities can be easily computed. Here, we follow the methodology
suggested by Kakwani (1993) which relies on the analytical computation of the
first order derivative of the chosen poverty measure with respect to its determi-
nants. For the family of measures Pa, the growth elasticity of poverty hm is then:

η αμ0
0

0, ,= −
( )

=
zf z

P
(2)

η
α

αα μ
α α

α
, .= −

−( )
≠−P P

P
1 0(3)

The estimation of the inequality elasticity of poverty is less straightforward.
The issue is that income distributions can change in various ways, hence yielding
different values of the inequality elasticity of poverty. A solution consists of
imposing a strong distributional hypothesis on the observed distributions (Quah,
2001; Bourguignon, 2003). A strong distributional hypothesis is met when the two
following conditions are fulfilled: (i) the observed income distribution can be
described by the chosen statistical distribution; (ii) the income distribution changes
in such a way that the final distribution can also be described using the same
functional form. This means that the initial and final distributions can both be
approximated using, for instance, a lognormal distribution, and thereafter that the
value of the inequality elasticity of poverty is unique.11

However, the drawback of this hypothesis is that it yields elasticities that
cannot easily be compared when using different statistical distributions, because
the estimated elasticities simultaneously depend on the characteristics of the used
functional form and on the chosen redistribution pattern. For instance, moving
from a lognormal distribution to another one does not entail the same redistribu-
tion process as a move from a gamma distribution to another one. This means that
the choice of a particular statistical distribution is generally not neutral from a
redistribution point of view and, as a consequence, may bias our assessment of the

10A noticeable exception is the Lorenz curve corresponding to the Pareto distribution.
11For example, the “natural” Gini elasticity of the headcount index under a strong lognormality

assumption is:

η λ μ
σ

σ σ μ
σ σ ϕ σ0 2 2 2

2

,*
log log

,I

z z
I=

( )
+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−
( )⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟ ( )

were l and j represent the hazard rate and density function of the standard normal distribution.
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relative contribution of growth and inequality changes to poverty reduction when
a strong distributional assumption is used. Moreover, practical issues occur with
strong distributional elasticities when considering functional forms with three or
more parameters since inequality elasticities of poverty are not unique any more.

In order to compare inequality elasticities of poverty based on different
functional forms, it is thus necessary to weaken the second condition of the strong
distributional hypothesis and to replace it by a common unique redistribution rule.
For the sake of simplicity, we can make use of the rule suggested by Kakwani
(1993), such that:

L p L p p L p*( ) = ( ) − − ( )( )ε ,(4)

where e indicates a proportional change in the Gini coefficient.12 As noted in Araar
and Duclos (2006), this transformation means that the final income is equal to the
initial income plus e times the difference between the initial income and the mean
income (y* = y + e(y - m)). Consequently, this transformation of the Lorenz curve
entails a Lorenz dominance relationship between L* and L. So, for negative
(positive) value of e, the situation of the poorest member of the population never
worsens (improves). From equation (4), Kakwani (1993) derives the following
Gini elasticities of poverty:
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The relative importance of growth and inequality to poverty alleviation can
easily be calculated on the basis of Kakwani’s (1993) formulas. For the measures
Pa, these relative contributions are:
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The case of the headcount index is particular as the ratio of the growth
elasticity to the Gini elasticity obtained through Kakwani’s transformation does
not depend on the income distribution. Thus, it will be the same, whatever assump-
tion is made on the shape of the observed income distribution. As per-capita
income is the only relevant characteristic of the income distribution, equation
(7) implies that growth is a more efficient lever of poverty reduction than pure

12It can easily be shown that e can also be interpreted as the same proportional increase of every
member of the S-Gini family of inequality indices as well as Aaberge’s (2000) inequality measures.
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redistribution if the ratio of the mean income to the poverty line is low.13 On the
contrary, the pursuit of redistribution objectives is a more effective tool for rich
countries when considering the headcount index.

For a � 0, distribution matters. As noted by Kakwani and Son (2004), the
ratio of the growth and inequality elasticities is negative in most cases, i.e. z < m.14

It can be easily shown that its absolute value decreases with mean income. So a
pure redistribution objective becomes more and more attractive as per-capita
income increases.15

2.2. Ad Hoc Functional Forms for the Lorenz Curve

In addition to the aforementioned “classical” statistical distributions, we can
also use ad hoc functional forms for the Lorenz curve. Characterizing a distribu-
tion through the direct estimation of the Lorenz curve was first used by Kakwani
and Podder (1973) and has become a common practice. These functional forms are
generally employed for descriptive purposes. Yet, Datt and Ravallion (1992) sug-
gested that they could be used to analyze poverty variations and Datt (1998)
defines a methodology based on their use to estimate growth and inequality
elasticities of poverty. These Lorenz curves are deemed ad hoc since they are
generally not theoretically grounded—the only exception being Maddala and
Singh (1977). This label may nevertheless be contested since most “classical”
statistical distributions do not stem from any theoretical model of income
formation.16

Due to their flexibility, these functional forms generally fit pretty well the data
and the estimation of their parameters is often easier than most traditional statis-
tical distributions. Nevertheless, the use of ad hoc Lorenz curves raises some
problems. First, estimated parameters are more likely than “classical” distribu-
tions to yield curves that do not comply with validity conditions of a Lorenz curve
(i.e. L(0) = 0, L(1) = 1 and ∂2L(p)/∂p2 � 0). Second, the underlying c.d.f. may not
be defined for the value of the poverty line.17 Third, these c.d.f. have sometimes no
closed form. To estimate the value of the poverty measures and their elasticities, it
is then necessary to use some known properties of the Lorenz curve, that is:

∂ ( )
∂

=
=

L p
p

z

p P0
μ

,(9)

13Of course, one should have in mind that growth always occurs with some transformation of the
relative distribution of incomes.

14The Gini elasticity of poverty is always positive if the poverty line is less than the mean income.

In the opposite case (z > m), the elasticity will be negative if and only if P
z

z
Pα α

μ< −
−1

. In pratice, such

a peculiar situation is unlikely to happen.
15It deserves to be stressed that these results may not hold with redistribution processes that differ

from the one assumed in equation (4).
16However, some authors tried to find some ex-post justifications for the use of existing statistical

distributions in the context of income distribution (e.g. Parker, 1999, for the type II generalized beta
distribution). From a historical perspective, it is interesting to note that the Pareto distribution was
derived from empirical regularities and not from a formal theory of individual income determination.

17This feature is also shared by the Pareto distribution.
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In the present paper, we include the functional forms described by Kakwani
and Podder (1973), Maddala and Singh (1977), Gaffney et al. (1980), Kakwani
(1980), Arnold and Villaseñor (1989), Fernandez et al. (1991) and Chotikapanich
(1993).18 Among these curves, the one proposed by Kakwani (1980), also known as
the beta Lorenz curve, and the one suggested by Arnold and Villaseñor (1989), also
called the elliptical or the general quadratic Lorenz curve, are the most widely
used. They are notably employed in POVCAL (Chen et al., 2001), the World
Bank’s tool designed for the estimation of poverty and inequality measures.19

These ad-hoc Lorenz curves as well as the corresponding c.d.f. are presented in
Table 2.

It is worth noting that we confine our investigations to the comparison of
parametric estimations of income distributions. Non-parametric estimations, espe-
cially kernel estimations, have become increasingly popular in the empirical litera-
ture (see, for instance, Sala-i-Martin, 2006, in the context of the world distribution
of income). However, Minoiu (2006) has recently shown that kernel estimations
often yield substantial errors for the estimation of poverty measures when applied
on few points of the Lorenz curve as in the case of the present study.

3. Data and General Results

Data related to the relative income distribution are from the UNU–WIDER
World Income Inequality Database (WIID), version 2.0b (UNU–WIDER, 2005).
This database has the advantage of containing the income share that accrues to the
different quantile of the population for a very large number of countries and a
relatively large period. The estimation of the scale parameter of the “classical”
statistical distributions has been realized using U.S.$ GDP per capita in 1996
PPP-adjusted terms from the Penn World Tables, version 6.1 (Aten et al., 2002).
The use of these national account aggregates presents some noticeable drawbacks
(Deaton, 2005), but household surveys’ mean value of income are rarely reported
in the WIID. As our goal is to highlight the differences in the elasticities of poverty
that uniquely stem from functional form choices, we can consider that biases in
poverty estimations that may occur when using national accounts aggegates, can
be ignored for the present study.

18The functional forms suggested by Basmann et al. (1990)—this form includes Kakwani and
Podder (1973) as a limiting case—and by Castillo et al. (1999)—Gaffney et al. (1980) and Fernandez
et al. (1991) are special cases of this parametric form—have not been retained for the present study.
Although the parameters of the former specification can be estimated using linear estimators, the
validity of the estimated Lorenz curve cannot easily be assessed. In the case of the latter functional
form, estimations could not be considered as reliable as estimations were highly unstable. Due to the
scarcity of information for each observed income distribution, the parametric approaches proposed by
Ryu and Slottje (1996) and Holm (1993) could not be used in the present study.

19For an empirical investigation of POVCAL’s performance, see Minoiu and Reddy (2007).
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To assess the robustness of our findings, we consider two poverty lines,
namely the traditional $1 and $2 per person per day poverty lines.20 As these
poverty lines are not meaningful in the context of high-income countries, the
sample has been reduced so as to keep observations for which GDP per capita is
less than $10,000. After dropping the observations for which the quality and the
reference population were not satisfactory (see Appendix A), we get a sample of
1,132 distributions for 115 countries from 1960 to 2003.21 For each distribution we
can make use of 6 to 13 points—10 points on average—of the Lorenz curve to
estimate the parameters of the different functional forms.22

The distributional parameters of some functional forms presented in the
previous section, namely those defined by Pareto (Kakwani and Podder, 1973;
Kakwani, 1980) and Arnold and Villaseñor (1989), have been estimated using
ordinary least squares estimators.23 However, the remaining parametrizations of
the Lorenz curve cannot be linearized. Hence, the estimation of their parameters
entails the use of non-linear least squares estimations. As the gradient vector could
not be obtained for some functional forms, Newton-like algorithms could not
be employed. To circumvent this problem, we have turned to the derivative-free
algorithm suggested by Nelder and Mead (1965), known as the downhill simplex.24

Before looking to the different elasticity estimates, it is necessary to check
whether validity conditions are met for each functional form and each observed
distribution. As emphasized in the previous section, this procedure is particularly
important in the case of the ad-hoc functional forms that can yield inconsistent
values of the income density if the Lorenz curve is not properly fitted. It can be seen
from Table 3 in which the percentage of consistent estimations are reported, that
this step should not be skipped. While the validity conditions are systematically
met with the “classical” statistical distributions—not surprisingly, the Pareto dis-
tribution is the exception—results are often disappointing when considering
ad-hoc functional forms. In particular, it is worth noting that the curves defined by
Kakwani (1980) and Arnold and Villaseñor (1989) yield consistent estimations
only for a half of the observations in our sample. We argue that this result may cast
serious doubt on the reliability of these functional forms for the estimation of
poverty and inequality indices in POVCAL. As shown by the substantial variabil-
ity of percentages with the value of the poverty line, it seems that a significant
number of inconsistent estimations are due to corresponding density functions
that are not defined for the value of z.

20Strictly speaking, the exact values are $1.08 and $2.16 in 1996 PPP-adjusted terms. The poverty
line defined for the Millennium Development Goals is fixed for 1993 PPPs, but Penn World Tables 6.1
are based on 1996 values.

21It can be seen from Table 12 that our sample includes countries that would be considered as
high-income countries according to the current World Bank’s classification. To check for the influence
of these observations, all the estimations and tests have also been realized on a reduced sample that does
not include these observations. Results are qualitatively similar to those reported in the present paper.

22The points (0,0) and (1,1) have been added since some ad-hoc functional forms like Arnold and
Villaseñor (1989) do not automatically respect the conditions L(0) = 0 and L(1) = 1.

23All the estimations, tests and plots have been realized with R (R Development Core Team, 2007).
The corresponding scripts are available upon request.

24To assess the robustness of our estimations, estimations have also been performed using the
simulated annealing method. For a review of non-linear model estimations and algorithm choices, see
Greene (2000, chapter 5).
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Since inconsistent estimations of the Lorenz curves produce erroneous values
for the growth and inequality elasticities of poverty—a common and striking result
is the presence of positive values for the growth elasticity of poverty—it makes
sense to compare the results between the sole functional forms that yield consistent
elasticities for the whole sample of income distributions. However, Table 3 shows
that the functional forms proposed by Maddala and Singh (1977), Gaffney et al.
(1980) and Fernandez et al. (1991) yield satisfactory estimations for a large
number of the observations of the sample. So as to include these specifications in
our comparison of estimated elasticities, we consider a reduced sample for our
analysis in this section and temporally leave aside the functional forms corre-
sponding to the Pareto distribution and Kakwani and Podder (1973), Kakwani
(1980), Arnold and Villaseñor (1989) and Chotikapanich (1993) Lorenz curves.
The sample respectively shrinks to 951 (84 percent of total sample) and 985 (87
percent of the whole sample) observations when considering the $1 and $2 poverty
lines.25 Mean values of the growth and inequality elasticities are reported in
Tables 4 and 5 for the functional forms that produce valid estimations for each
observation of this reduced sample.26 It illustrates the dependence of estimated
elasticities on functional form choices. Differences are non-negligible from an
economic point of view, in particular for the Gini elasticities of poverty. The
contrast is striking when comparing the mean values of elasticities obtained with
the lognormal and Weibull distributions: using the $1 poverty line, the elasticities
corresponding to the former functional form are on average three times larger than
those stemming from the latter statistical distribution. Such differences are

25Student’s t-tests do not lead to the rejection of the hypothesis that the reduced sample exhibits the
same average characteristics (GDP per capita and Gini coefficient) as the whole sample.

26Estimated values for the whole sample with the sole adequate statistical distributions are
presented in Table 3.

TABLE 3

Percentage of Consistent Estimations for Each Functional
Form

Distribution z = $1 z = $2

Pareto 27 37
Lognormal 100 100
Gamma 100 100
Weibull 100 100
Fisk 100 100
Singh–Maddala 100 100
Dagum 100 100
Beta 2 100 100
Chotikapanich (1993) 63 67
Kakwani and Podder (1973) 42 40
Gaffney et al. (1980) 98 99
Fernandez et al. (1991) 98 99
Kakwani (1980) 50 53
Maddala and Singh (1977) 83 87
Arnold and Villaseñor (1989) 41 48
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economically significant and the use of these rival values of elasticities may result
in diverging estimations if employed so as to predict future poverty levels.27

However, these differences may be due to the presence of extreme values for
some functional forms. This issue is caused by the heterogenous behaviors of the
different functional forms at the left tail of the income distribution, and the highly
skewed distribution of estimated elasticities in our sample.28 A way of dealing with
this issue is to compare median values. These are presented for our reduced sample
in Tables 6 and 7. We can note that the magnitude of median values is slightly
lower than that of mean values, especially concerning the Gini elasticities
of poverty, hence confirming that the distributions of growth and inequality
elasticities of poverty are skewed toward zero. The differences between each

27Incidentally, one can note that, on average, Gini elasticities of Pa measures exhibit larger values
than growth elasticities. This result contrasts with the traditional view of mean income growth as the
most efficient vector of poverty alleviation. However, caution is needed when interpreting these figures
since this result is to a certain extent due to the assumption made in Section 2.1 about the redistributive
process that corresponds to observed inequality variations.

28For instance, the skewed shape of the distribution of growth elasticities can be explained by the
fact that they are theoretically defined on the interval [0,+•).

TABLE 4

Mean Values of Growth and Gini Elasticities of P0, P1 and P2: Restricted Sample,
U.S.$1 Poverty Line

Distribution

Growth Elasticity Gini Elasticity

P0 P1 P2 P0 P1 P2

Lognormal -3.52 -3.83 -4.08 38.28 48.88 59.2
(0.18) (0.2) (0.19) (3.13) (3.54) (3.62)

Gamma -1.48 -1.56 -1.6 13.5 22.3 31.21
(0.09)‡ (0.1)‡ (0.11)‡ (1.16)‡ (1.27)‡ (1.45)‡

Weibull -1.18 -1.23 -1.25 10.05 18.78 27.28
(0.06)‡ (0.06)‡ (0.06)‡ (0.65)‡ (0.82)‡ (1.11)‡

Fisk -2.11 -2.23 -2.29 18.83 27.49 36.25
(0.05)‡ (0.05)‡ (0.05)‡ (0.89)‡ (1.08)‡ (1.41)‡

Beta 2 -3.36 -3.68 -3.9 32.77 42.37 52.03
(0.32) (0.33) (0.34) (4.11) (4.31) (4.63)*

Singh–Maddala -1.92 -2.04 -2.11 16.32 25.11 33.77
(0.06)‡ (0.07)‡ (0.07)‡ (0.76)‡ (1.01)‡ (1.24)‡

Dagum -1.96 -2.11 -2.18 16.04 24.9 33.55
(0.11)‡ (0.12)‡ (0.13)‡ (1.06)‡ (1.26)‡ (1.5)‡

Gaffney et al. (1980) -2.13 -2.13 -2.21 17.12 25.48 34.17
(0.07)‡ (0.08)‡ (0.09)‡ (0.86)‡ (1.05)‡ (1.33)‡

Fernandez et al. (1991) -1.85 -1.97 -2.03 15.47 24.1 32.8
(0.08)‡ (0.09)‡ (0.1)‡ (0.84)‡ (1.03)‡ (1.26)‡

Maddala and Singh (1977) -2.62 -2.84 -3 22.72 32.22 41.45
(0.35)† (0.36)* (0.42)* (2.85)‡ (3.65)† (3.72)†

Mixed (ssr) -3.89 -6.09 -7.28 38.49 60.77 98.11
(3.72) (8.14) (12.01) (43.58) (102.39) (138.03)

Mixed (sea) -3.86 -6.78 -6.58 42.9 57.69 90.94
(4.05) (8.63) (15.86) (51.05) (102.6) (147.8)

Mixed (wssr) -4.13 -7.23 -7.24 41.02 68.95 86.12
(3.48) (7.92) (13.47) (44.44) (104.9) (127.12)

Notes: Bootstrapped standard errors in parentheses. The symbols *, † and ‡respectively indicate
that the mean value is significantly different from the one obtained under lognormality at the 10, 5 and
1% levels. The sample represents 84% of the whole sample. Mean value of income per capita is $3,370
and average Gini coefficient is 0.41. For a definition of the series mixed (ssr), mixed (sea) and mixed
(wssr), see Section 5.
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functional form are less pronounced than those observed with the mean values, but
are still significant from an economic point of view.

It is worth stressing that these economic significant differences are often
associated with statistical significant differences. For instance, mean-difference
and median-difference tests show that differences are often significant at the 1
percent level when estimated values are compared with those obtained with the
lognormal distribution.29,30 A noticeable exception is the beta distribution of the

29Since elasticities have been derived from estimated parameters obtained from few points of the
Lorenz curve, it was necessary to take account of prediction errors at this level when computing
standard errors of mean and median values. As a consequence, a two stage bootstrap procedure has
been employed. In the first stage, individual elasticities have been estimated on many samples with
replacement of the points of the Lorenz curve. Then, the required statistics have been computed on
samples with replacement of the available distributions. For technical reasons—the procedure implies
the use of numerous large matrices—the first stage has been limited to 200 replications while 1,000
replications have been used for the second stage. These choices conform with recommandations made
in Efron and Tibshirani (1993).

30Significance symbols reported in Tables 5 to 7 refer to non-parametric mean-difference and
median-difference tests. In order to save space, we do not report test results with respect to each
functional form. However, the small size of estimated standard errors is a strong indications that
observed differences are generally statistically different.

TABLE 5

Mean Values of Growth and Gini Elasticities of P0, P1 and P2: Restricted Sample,
U.S.$2 Poverty Line

Distribution

Growth Elasticity Gini Elasticity

P0 P1 P2 P0 P1 P2

Lognormal -2.71 -3.05 -3.3 15.37 20.94 26.35
(0.13) (0.13) (0.14) (1.09) (1.17) (1.26)

Gamma -1.36 -1.48 -1.54 6.66 11.24 15.83
(0.09)‡ (0.1)‡ (0.11)‡ (0.53)‡ (0.59)‡ (0.7)‡

Weibull -1.08 -1.17 -1.21 4.83 9.37 13.9
(0.06)‡ (0.07)‡ (0.07)‡ (0.34)‡ (0.4)‡ (0.5)‡

Fisk -1.88 -2.05 -2.14 8.97 13.57 18.12
(0.05)‡ (0.04)‡ (0.04)‡ (0.38)‡ (0.51)‡ (0.63)‡

Singh–Maddala -1.69 -1.86 -1.95 7.78 12.33 16.98
(0.06)‡ (0.06)‡ (0.07)‡ (0.38)‡ (0.47)‡ (0.57)‡

Dagum -1.66 -1.83 -1.94 7.62 12.3 16.75
(0.08)‡ (0.09)‡ (0.1)‡ (0.47)‡ (0.57)‡ (0.69)‡

Beta 2 -2.71 -3.04 -3.28 14.81 20.12 25.37
(0.22) (0.26) (0.25) (1.74) (1.85) (2.06)

Gaffney et al. (1980) -1.89 -1.91 -2.02 8.37 12.71 17.22
(0.06)‡ (0.07)‡ (0.07)‡ (0.37)‡ (0.5)‡ (0.6)‡

Fernandez et al. (1991) -1.62 -1.8 -1.89 7.45 12.16 16.53
(0.07)‡ (0.08)‡ (0.09)‡ (0.42)‡ (0.5)‡ (0.61)‡

Maddala and Singh (1977) -2.11 -2.4 -2.6 10.3 15.35 20.41
(0.26)† (0.3)* (0.35) (1.54)† (1.78)† (2.03*

Mixte (ssr) -2.36 -3.14 -3.53 11.11 19.91 25.43
(4.39) (4.01) (7.55) (4.66) (11.18) (25.88)

Mixte (sea) -2.24 -3.7 -4.04 10.58 22.09 26.56
(2.37) (5.23) (9.07) (7.55) (11.79) (16.77)

Mixte (wssr) -2.35 -3.23 -3.79 12.23 20.46 27.52
(0.46) (0.63) (0.97) (2.74) (3.47) (6.85)

Notes: Bootstrapped standard errors in parentheses. The symbols *, † and ‡respectively indicate
that the mean value is significantly different from the one obtained under lognormality at the 10, 5 and
1% levels. The sample represents 87% of the whole sample. Mean value of income per capita is $3,523
and average Gini coefficient is 0.42. For a definition of the series mixed (ssr), mixed (sea) and mixed
(wssr), see Section 5.
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second kind that yields estimations that are not significantly different from
the corresponding lognormal elasticities of poverty.

Highlighting these significant differences between rival distributive functional
forms is important since it points out the potential fragility of results based on
distributive assumptions that may not be adequate to describe observed income
distributions. In Tables 5 to 7, it is interesting to note that the lognormal distribu-
tion always provides the largest absolute mean and median values of both growth
and Gini elasticities. On the contrary, lowest absolute values are obtained with the
Weibull distribution. Thus, it seems that using the latter statistical distribution
implies that more ambitious growth and redistribution objectives have to be reached
than with the former so as to achieve a given poverty reduction target. Moreover,
our results confirm that functional forms also influence how we appreciate the
relative contribution of growth and redistribution to poverty alleviation. For
instance, considering the mean values reported in Table 5 related to the measure P2

with the $1 poverty line, a 1 percent decrease of the Gini coefficient (without growth)
is on average 20 times more efficient that a 1 percent increase of mean income

TABLE 6

Median Values of Growth and Gini Elasticities of P0, P1 and P2: Restricted Sample,
U.S.$1 Poverty Line

Distribution

Growth Elasticity Gini Elasticity

P0 P1 P2 P0 P1 P2

Lognormal -2.72 -3.03 -3.27 18.67 28.7 37.91
(0.11) (0.11) (0.11) (1.5) (1.82) (2.26)

Gamma -1.24 -1.32 -1.39 7.67 16.22 24.09
(0.08)‡ (0.09)‡ (0.09)‡ (0.67)‡ (0.97)‡ (1.24)‡

Weibull -1.13 -1.17 -1.2 7.29 15.26 22.92
(0.06)‡ (0.06)‡ (0.06)‡ (0.55)‡ (0.82)‡ (1.16)‡

Fisk -2.17 -2.22 -2.26 14.58 22.75 30.1
(0.04)‡ (0.04)‡ (0.04)‡ (0.85)‡ (1.19)‡ (1.54)‡

Beta 2 -2.49 -2.7 -2.85 18.33 28.15 37.1
(0.13) (0.14) (0.15)† (1.21) (1.57) (1.83)

Singh–Maddala -1.85 -1.93 -1.98 13.13 21.18 28.75
(0.07)‡ (0.07)‡ (0.07)‡ (0.82)‡ (1.08)‡ (1.39)‡

Dagum -1.68 -1.75 -1.82 12.07 20.51 28.82
(0.1)‡ (0.11)‡ (0.11)‡ (0.89)‡ (1.2)‡ (1.5)‡

Gaffney et al. (1980) -1.98 -1.97 -2.02 13.89 21.65 29.29
(0.08)‡ (0.08)‡ (0.09)‡ (0.8)‡ (1.12)‡ (1.4)‡

Fernandez et al. (1991) -1.72 -1.79 -1.84 12.23 20.13 28.15
(0.09)‡ (0.09)‡ (0.1)‡ (0.87)‡ (1.16)‡ (1.38)‡

Maddala and Singh (1977) -2.15 -2.32 -2.45 15.22 24.31 32.81
(0.2)* (0.22)† (0.25)† (1.64)* (2.37)* (2.02)*

Mixed (ssr) -1.63 -2.3 -2.38 9.63 24.94 32.81
(0.24)† (0.23)* (0.25)* (2.44)† (2.19) (2.7)

Mixed (sea) -1.7 -2.3 -2.38 10.97 25.03 32.93
(0.23)† (0.21)* (0.25)* (2.41)† (2.21) (2.66)

Mixed (wssr) -1.94 -2.45 -2.54 13.58 26.12 34.28
(0.24)† (0.25) (0.26)* (2.51)* (2.38) (2.96)

Notes: Bootstrapped standard errors in parentheses. The symbols *, † and ‡respectively indicate
that the median value is significantly different from the one obtained under lognormality at the 10, 5
and 1% levels. The sample represents 84% of the whole sample. Mean value of income per capita is
$3,370 and average Gini coefficient is 0.41. For a definition of the series mixed (ssr), mixed (sea) and
mixed (wssr), see Section 5.

Review of Income and Wealth, Series 55, Number 2, June 2009

© 2009 The Author
Journal compilation © International Association for Research in Income and Wealth 2009

281



(without inequality change) using the Weibull distribution. On the contrary, the
ratio is less than 15 to 1 under lognormality of the income distributions. As a
consequence, the adoption of a specific functional form is also determinant for the
appreciation of the pattern of growth with redistribution that could be considered as
optimal in terms of poverty alleviation. In our case, elasticities based on the Weibull
distribution would thus suggest to define more redistribution-oriented policies of
poverty reduction than those based on lognormality.

4. Which Functional Form is the “Right” One?

In the previous section, we emphasized the crucial role of functional
form choices, but this result is not sufficient until we can tell which distributive
assumption provides the best approximations possible. For this purpose, we need
to use some criterion to choose between the different functional forms the one that
is the most appropriate for poverty analysis. In the next paragraphs, we will first

TABLE 7

Median Values of Growth and Gini Elasticities of P0, P1 and P2: Restricted Sample,
U.S.$2 Poverty Line

Distribution

Growth Elasticity Gini Elasticity

P0 P1 P2 P0 P1 P2

Lognormal -1.96 -2.31 -2.53 6.17 11.38 16.33
(0.08) (0.08) (0.09) (0.46) (0.71) (0.88)

Gamma -1.09 -1.18 -1.25 3.35 7.75 11.98
(0.08)‡ (0.08)‡ (0.09)‡ (0.32)‡ (0.44)‡ (0.62)‡

Weibull -1.02 -1.09 -1.14 3.13 7.45 11.62
(0.06)‡ (0.06)‡ (0.06)‡ (0.24)‡ (0.4)‡ (0.58)‡

Fisk -1.94 -2.04 -2.1 6.23 10.67 14.83
(0.04) (0.04)‡ (0.04)‡ (0.4) (0.57)† (0.76)‡

Beta 2 -1.98 -2.22 -2.38 6.59 11.63 16.46
(0.1) (0.12) (0.13) (0.55) (0.82) (0.97)

Singh–Maddala -1.67 -1.76 -1.83 5.55 9.82 14.01
(0.07)‡ (0.07)‡ (0.08)‡ (0.43)† (0.52)‡ (0.69)‡

Dagum -1.52 -1.6 -1.67 5.08 9.55 13.95
(0.09)‡ (0.09)‡ (0.11)‡ (0.4)‡ (0.51)‡ (0.74)‡

Gaffney et al. (1980) -1.85 -1.78 -1.84 6.22 10.14 14.31
(0.07) (0.08)‡ (0.08)‡ (0.41) (0.56)‡ (0.72)‡

Fernandez et al. (1991) -1.55 -1.64 -1.7 5.21 9.6 13.64
(0.08)‡ (0.09)‡ (0.1)‡ (0.42)‡ (0.54)‡ (0.69)‡

Maddala and Singh (1977) -1.78 -1.96 -2.12 5.86 10.7 15.12
(0.13)* (0.15)* (0.22)* (0.49) (0.75) (1.02)*

Mixed (ssr) -1.28 -1.9 -1.99 3.92 10.4 14.37
(0.16)† (0.15)* (0.18)* (0.44)‡ (0.65) (0.92)*

Mixed (sea) -1.32 -1.9 -1.99 4.04 10.27 14.4
(0.17)‡ (0.14)* (0.18)* (0.45)‡ (0.66) (1)†

Mixed (wssr) -1.41 -1.98 -2.09 4.15 10.6 14.48
(0.16)† (0.14) (0.17) (0.45)† (0.72) (1.03)

Note: Bootstrapped standard errors in parentheses. The symbols *, † and ‡respectively indicate
that the median value is significantly different from the one obtained under lognormality at the 10, 5
and 1% levels. The sample represents 87% of the whole sample. Mean value of income per capita is
$3,523 and average Gini coefficient is 0.42. For a definition of the series mixed (ssr), mixed (sea) and
mixed (wssr), see Section 5.
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perform a short review of goodness-of-fit criteria before investigating which of the
aforementioned functional forms is the most adequate.

4.1. Goodness-of-Fit Criteria

Our analysis is based on the fundamental but reasonable assumption that the
better is the approximation of the Lorenz curve, the closer are estimated elasticities
to their real values. The direct implication is that the functional form that is
supposed to yield the most satisfactory estimations, is the one that minimizes some
function of Lorenz curve prediction errors. In this spirit, the traditional approach
is to rely on the following standard statistics of goodness-of-fit:

ssr L p L pi i
i

N

= ( ) − ( )( )
=
∑ ˆ ,

2

1

(11)

sae L p L pi i
i

N

= ( ) − ( )
=
∑ ˆ ,

1

(12)

with L̂ pi( ) denoting the estimated value of the Lorenz curve at pi, and N being the
number of available points. The main problem with these indices is that all pre-
diction errors are considered and are given the same weight. In our particular case,
this feature can be seen as conflicting with the most central axiom in poverty
measurement, namely the focus axiom (Sen, 1976), which stipulates that income
above the poverty line should not be considered. In other words, it does not matter
if prediction errors occur for the non-poor quantiles of the population. The solu-
tion suggested by Datt (1998) is to modify the ssr criterion in the following manner:

pssr L p L pi i
i

n

= ( ) − ( )( )
=
∑ ˆ ,

2

1

(13)

with n corresponding to the first population quantile such that p Pn � 0̂ . So, it
consists of restricting the ssr criterion to prediction errors over the part of the
Lorenz curve that correspond to poor individuals.

Nevertheless, Datt’s suggestion is not appropriate here for both practical and
theoretical reasons. First, this figure requires a sufficient number of Lorenz curve
points so as to be computable. For the vast majority of the income distributions of
our sample, data availability is limited to the share of total income by population
deciles. If the estimated value of the headcount index is less than 10 percent for the
chosen poverty line, the value of pssr is then zero. So it cannot be used to assess the
adequacy of the different functional forms. Yet, the frequency of this result over
the entire sample is about two thirds when considering the $1 poverty line.31

Second, in the case of the headcount index, we should not care about the quality
of the fit for the points of the Lorenz curve below P̂0

since the headcount index is
related to the Lorenz curve only at the corresponding quantile of the population
(cf. relation (9) above).

31This frequency varies only marginally regardless of the statistical distribution used.
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So as to comply with these conflicting requirements, we propose a measure
based on squared errors for which the weights decrease with the distance from the
estimated value of the headcount index. To make comparisons possible between
each functional form, the measure is normalized by the sum of weights. This
normalization is also helpful since comparisons with the traditional ssr figure can
be achieved. The suggested criterion is then:

wssr
L p L p p P

p P

i i ii

N

ii

N
=

( ) − ( )( ) − −( )
− −( )

=

=

∑
∑

ˆ ˆ

ˆ
.

2

0

2

1

0

2

1

1

1
(14)

A drawback of these different measures is that they focus on the sole precision
aspect of the estimation. However, the use of more flexible functional forms may
lead to an improvement of the fit that is not sufficient with respect to the loss of
degrees of freedom, hence to the increase of standard errors. In order to compare
non-nested models while penalizing for the addition of new parameters, we can use
the Akaike and Schwartz information criteria (cf. Gujarati, 2004). These measures
are respectively:

aic e
L p L p

N
K N i ii

N

=
( ) − ( )( )=∑2

2

1
ˆ
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bic N
L p L p

N
K N i ii

N

=
( ) − ( )( )=∑ ˆ 2

1(16)

where K is the number of estimated parameters.

4.2. Comparison of Functional Forms Performances

The results of the application of the ssr, sae, wssr, aic and bic criteria on our
restricted sample with the $1 poverty line are summarized in Table 8.32 The top
panel presents mean values of the different criteria for each functional form. To
ease the reading and the comparison of the results, the value of each figure has
been normalized by the smallest observed mean value over the sample. Thus, a
value of one is attributed to the best performing functional and larger values
indicate in which proportion the considered functional form yields less precise
estimations according to the chosen criterion.

Our results show that the curve defined by Maddala and Singh (1977) is the
most efficient form.33 More generally, one can observe non-negligible gaps between

32The results for the sample corresponding to the $2 poverty line are reported in Table 4 in the
Appendix. The results are very close to those observed with the $1 poverty line sample.

33Results corresponding to the whole sample are not reported here so as to save space. However,
it is interesting to draw some comments on the results obtained when validity conditions are not taken
into account. First, while the Maddala and Singh (1977) functional form is still the best performing one
according to the ssr criterion, other criteria entail a marked preference for the curve suggested by
Kakwani (1980). Second, the parametrizations proposed by Kakwani and Podder (1976) and Arnold
and Villaseñor (1989) may sometimes yield consequent errors. This result is particularly surprising for
the latter one since it is very flexible and its parameters can be obtained using ordinary least squares
estimators. Our experience is that this phenomenon may be due to multicollinearity issues between the
different regressors.
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two-parameters on one hand and three- and four-parameter distributions on the
other hand. It is interesting to note that all these results seem to be robust since
rankings of the different functional forms are very stable whatever criterion is
chosen.34 The use of the aic and bic criteria confirms the superiority of three-
parameter over two-parameter forms and of four-parameter over three-parameter
forms, though the gain is reduced in this latter case. The gap is dramatically
important when comparing the gamma and Weibull distributions with more flex-
ible functional forms (e.g. errors are more than 45 times larger than with Maddala
and Singh (1977) regarding the wssr criteria). This observation is not surprising
since only one parameter is dedicated to the description of the shape of the relative
distributions with two-parameter statistical distribution. This is clearly not suffi-
cient considering the heterogeneity of observed income distributions. However,
differences are also significant among two-parameter functional forms. Estima-
tions are on average more precise with the lognormal and Fisk distributions than
with the gamma and Weibull distributions. From a poverty point of view, this
result deserves to be underlined since, for a given degree of inequality, the share of
total income that is allocated to the bottom quantile of the population is smaller
with the latter distributions than with the former.

The robustness of these results can be checked using the bottom part of
Table 8 that reports the ratios of the median values for each criterion. Although

34More precisely, the ranking is exactly the same with respect to criteria based on the sum of
squared errors and changes, but only marginally, with the sae criteria.

TABLE 8

Goodness-of-Fit, Mean and Median Values: Restricted Sample, U.S.$1 Poverty Line

Distribution ssr sae wssr aic bic

Mean value
Lognormal 9.69 3.39 10.58 6.47 6.26
Gamma 44.78 7.89 45.84 28.46 27.73
Weibull 45.45 8.57 48.59 29.21 28.42
Fisk 7.24 2.95 7.05 4.85 4.69
Singh–Maddala 1.41 1.30 1.58 1.17 1.15
Dagum 1.67 1.40 1.92 1.35 1.33
Beta 2 1.92 1.41 2.18 1.64 1.61
Gaffney et al. (1980) 1.40 1.27 1.55 1.14 1.12
Fernandez et al. (1991) 1.59 1.43 1.84 1.27 1.26
Maddala and Singh (1977) 1.00 1.00 1.00 1.00 1.00

Median value
Lognormal 5.01 2.56 5.35 4.43 3.92
Gamma 34.54 6.86 34.73 27.03 25.15
Weibull 42.72 8.02 48.89 34.87 31.84
Fisk 4.18 2.21 4.31 3.19 2.95
Singh–Maddala 1.33 1.21 1.62 1.13 1.09
Dagum 1.40 1.26 1.71 1.21 1.17
Beta 2 1.23 1.17 1.25 1.05 1.02
Gaffney et al. (1980) 1.26 1.16 1.44 1.08 1.05
Fernandez et al. (1991) 1.47 1.32 1.84 1.26 1.21
Maddala and Singh (1977) 1.00 1.00 1.00 1.00 1.00

Notes: The sample represents 84% of the whole sample. Mean value of income per capita is $3,370
and average Gini coefficient is 0.41.
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differences are less pronounced than with mean values, the main observations
presented in the last paragraph still hold. However, it can be noted that the beta
distribution of the second kind now perform slightly better than most three-
parameter functional forms.

These results seem to suggest a relative stability of the ranking of the different
functional forms tested in this study. However, we ought to be cautious before
claiming that a particular functional form should unilaterally be preferred to the
other ones. Yet, the average superiority of a statistical distribution does not mean
that other functional forms systematically fit the data worse, and thus should be
discarded. The Pareto distribution can be used on a very limited portion of our
sample and generally yields poor description of observed income distributions, but
it may perform very well in a few cases. In order to get a better assessment of the
relative performance of each functional form—including those that were tempo-
rarily excluded from the analysis—the ranking of each one has been established for
each observed income distribution of the complete sample using the different
goodness-of-fit criteria. The frequency of first ranking as well as the value of the
median rank are presented in Table 9.35

The frequencies reported in the first part of Table 9 confirm the previous
results regarding the contrasting performances of the different functional forms.
They also show that, except in some particular cases, each one of the tested
parametrizations can be considered as the most relevant choice for the description
of at least one income distribution. Nonetheless, two functional forms outperform
others with respect to the ssr, sae and wssr criteria, namely the curves suggested by
Maddala and Singh (1977) and Kakwani (1980). Indeed, these two parametriza-
tions are the most appropriate for more than half (up to two thirds) of the observed
income distributions. Their preponderance deserves all the more to be stressed
since their use is constrained by the respect of validity conditions. For instance,
Kakwani (1980) curve is the most performing one for about 30 percent of the
observations, but yields consistent estimations with only half of the observed
distributions of the sample. Nevertheless, the aic and bic criteria show that the
precision gain does not fully compensate for the loss of degrees of freedom when
using four-parameter functional forms. If one is concerned with the goodness-of-
fit/precision tradeoff, these criteria indicate that the beta distribution of the second
kind is a good candidate.36 These results are confirmed by the estimations of the
median values of the ranks presented in the bottom part of Table 9.

On the other side of the performance spectrum, one can note that the Pareto,
gamma, Weibull, Fisk (Chotikapanich, 1993) and Kakwani and Podder (1973)
distributions represent only a small part of the distributions of the sample regard-
less of the selection criteria. This result is relatively surprising for Kakwani and
Podder’s (1973) curve since it is more flexible than the other above-mentioned
distributions. Table 9 indicates that the lognormal distribution performs signifi-
cantly better than the other two-parameter distributions. However, the frequency
of first ranking is only 3 percent according to the wssr criterion and the median
rank is high. So lognormality of income distributions is clearly not the rule, but it

35Of course, the rankings have been realized among the sole consistent estimations.
36One needs to be cautious with this statement since the performances of the beta distribution of

the second kind are very sensitive to the choice of poverty line when using the wssr criterion.
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can be the exception.37 However, since this functional form yields growth and
inequality elasticities of poverty that, on average, differ significantly from the one
obtained with most three- and four-parameter parametrizations from both eco-
nomic and statistical points of view, it is legitimate to question the relevance of this
assumption for the estimation of the growth and inequality elasticities of poverty.

Before investigating the lognormal case, it is interesting to note that our
results only partially support those of prior studies that compared the performance
of some of the functional forms used in this paper. First, it is important to note that
such studies are rather scarce for large samples of income distributions. To our
knowledge, our study is the most comprehensive one that has been realized con-
sidering both the number of observed income distributions and the number of

37It is interesting to note that the lognormal is the most adequate for a very heterogenous set of
countries. For instance, in our sample the exceptions are Belarus (1998), Central African Republic
(1992), El Salvador (1977), Gambia (1992), Guatemala (1987), Honduras (1987, 1990, 1998), Israel
(1992), Latvia (1996), Mexico (1984), Moldova (1997), Nigeria (1980), Romania (1994), South Africa
(1993), Thailand (1986, 1990) and Tunisia (1965) using the ssr criterion.

TABLE 9

Goodness-of-Fit: Frequency of First Ranking and Median Rank

Distribution ssr sae wssr$1 wssr$2 aic bic

First rank frequency (%)
Pareto 0.0 0.0 0.0 0.1 0.1 0.1
Lognormal 1.1 1.9 3.3 2.5 5.8 7.2
Gamma 0.4 0.1 0.5 0.3 2.0 2.1
Weibull 0.0 0.1 0.2 0.2 0.5 0.7
Fisk 0.0 0.7 0.0 0.2 3.4 4.0
Singh–Maddala 3.2 3.8 5.1 4.9 6.9 6.7
Dagum 2.6 3.1 4.2 3.4 4.3 4.8
Beta 2 7.8 8.7 18.1 12.7 22.1 23.1
Chotikapanich (1993) 0.6 0.6 0.3 0.4 0.7 0.7
Kakwani and Podder (1973) 0.0 0.0 0.8 0.7 0.0 0.0
Gaffney et al. (1980) 4.4 5.7 5.4 5.1 9.2 9.1
Fernandez et al. (1991) 4.0 3.1 4.0 3.4 9.0 9.3
Maddala and Singh (1977) 35.6 32.8 31.2 30.5 14.9 13.6
Kakwani (1980) 31.2 29.6 18.1 25.4 12.9 11.0
Arnold and Villaseñor (1989) 9.3 9.9 8.8 10.3 8.0 7.7

Median rank
Pareto 12 12 12 12 12 12
Lognormal 9 9 8 9 9 9
Gamma 10 10 10 11 10 10
Weibull 10 10 10 11 10 10
Fisk 8 8 8 8 8 8
Singh–Maddala 5 5 5 5 4 4
Dagum 5 5 5 6 5 5
Beta 2 4 4 3 4 3 3
Chotikapanich (1993) 12 12 11 12 12 12
Kakwani and Podder (1973) 13 13 10 12 13 13
Gaffney et al. (1980) 4 4 4 4 4 4
Fernandez et al. (1991) 6 6 6 6 6 6
Maddala and Singh (1977) 2 2 2 2 4 4
Kakwani (1980) 1 1 2 2 3 3
Arnold and Villaseñor (1989) 3 3 3 3 4 4

Note: wssr$1 and wssr$2 respectively correspond to the $1 and $2 poverty lines.
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functional forms. Using 82 observed distribution at various years for 23 developed
and middle-income countries, Bandourian et al. (2002) observed that the Weibull
and Dagum were the best-fitting models for the two- and three-parameter distri-
bution family, when opposed to the gamma, lognormal, generalized gamma, beta
1, beta 2 and Singh–Maddala distributions. On the contrary, our results suggest
that the Weibull distribution is a poor choice and that more precise descriptions
can be obtained using the Fisk and lognormal distributions.38 In the same spirit,
the Dagum distribution is outperformed by the beta distribution of the second
kind as well as the Gaffney et al. (1980) curve, although its use may be cumber-
some since its c.d.f. has no closed form.

Concerning ad-hoc Lorenz curves, comparisons are as rare as with “classical”
statistical distributions and samples are generally small. For instance, Schader and
Schmid (1994) use 16 series of grouped data for the former Federal Republic of
Germany between 1950 and 1988. Their results show that the curves suggested by
Kakwani and Podder (1976) and Kakwani (1980) outperformed the lognormal,
Singh–Maddala and Dagum distributions as well as the curves defined by
Kakwani and Podder (1973), Gaffney et al. (1980), Gupta (1984), Arnold and
Villaseñor (1989), Basmann et al. (1990) and Fernandez et al. (1991). Cheong
(2002) realizes a similar study using American data for the period 1977–83. He
concludes that the Gaffney et al. (1980) and Kakwani (1980) curves should be
prefered to the one proposed by Kakwani and Podder (1976), Fernandez et al.
(1991) and Chotikapanich (1993). In the present study, our results tend to favor
the parametrizations proposed by Maddala and Singh (1977) and Kakwani (1980)
among ad-hoc functional forms. However, since the latter yields numerous incon-
sistent estimations, it may be wise to turn to the former.

The main conclusion that can be drawn from the results presented in this
section as well as from the comparison with previous studies is that it is undoubt-
edly difficult to rank functional forms with respect to their performance, even if
greater flexibility is generally associated with better fit. This prudence is reinforced
by the time-instability of the performance of the different functional forms. In the
previous paragraphs, we have noted that no functional form seems well-suited to
deal with the heterogeneity of the income distributions included in our sample. The
next step is to ask whether this variability of performance is due to differences
between intrinsic characteristics of the countries in the sample. In other words, if
a functional form is relevant to describe the income distribution in a given country,
should we be confident about its use for the estimation of the distribution at other
points of time?39 To answer this question, we have decomposed the variance of
each goodness-of-fit criterion in their within- and between-country components
for each functional form. The share of the between component of the total vari-
ance is reported in Table 10 for the restricted sample corresponding to the $1
poverty line. The results of this decomposition are quite surprising since they show
that the most important part of the performance instability of the functional forms
is due to within-country changes in the income distributions. Differences can be

38It is important to have in mind that the two samples do not overlap since our sample is mainly
composed of low-income countries. Another issue is that Bandourian et al. (2002) assess the quality
using prediction errors of the density function while we focus on predictions errors of the Lorenz curve.

39We would like to thank an anonymous referee for suggesting an investigation of this question.
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noted between the various functional forms and criteria, but at least two thirds of
the observed heterogeneity cannot be explained by cross-country fixed effects.

Thus, the promotion of any particular functional form for the description of
observed income distributions is clearly tricky and a pragmatic position is
undoubtedly preferable.40 Indeed, we argue that it may be suitable not to impose
a common functional form for every observed income distribution, but to choose
the most adequate for each one of these distributions. This solution is adopted in
the next section to investigate the drawbacks of a blind use of the lognormal
distribution to compute growth and inequality elasticities of poverty.

5. The Lognormal Case

In a recent paper, Lopez and Servèn (2006), using the Dollar and Kraay
(2002) database, have concluded that the lognormality assumption cannot be
rejected for the estimation of income distributions in cross-section analysis.41 Our
objective in this section is to investigate whether the lognormality assumption
yields acceptable estimations of the growth and inequality elasticities of poverty
defined in Section 2.1. Indeed, it does not matter that more flexible functional

40Here, it may be interesting to draw a parallel with Thurow’s (1970) famous assertion that “God
is not a beta distribution.” In other words, statistical distributions are not used to explain the shape of
observed income distribution but just to describe them. Consequently, only practical reasons may
justify the use of the same functional form to estimate a heterogenous set of income distributions.

41The assumption is tested by regressing the observed income share of a given quintile of popula-
tion by a constant and the income share of the corresponding theoretical quantile under lognormality.
Lopez and Servèn (2006) conclude that lognormality cannot be rejected since the two coefficients are
jointly not different from the couple (0,1). The empirical illustration in Bourguignon (2003) can also be
seen as a lognormality test. The author test consists of regressing the observed relative variation of the
headcount index by the sum of the products of the rate of growth of its determinants, namely the mean
income and the Gini coefficient, by the corresponding elasticities under strong lognormality assump-
tion. In this case, lognormality is not rejected since both coefficients are not significantly different
from unity.

However, these tests only show that lognormality is on average a valid assumption. The limit is that
the distributions of the sample may on average exhibit characteristics of lognormality without any of
them being properly described by the lognormal distribution. This may explain why our results are
consistent with the findings of the aforementioned studies, while apparently at odds with them.

TABLE 10

Between-Country Share of Total Variance of the Different
Goodness-of-Fit Criteria: Restricted Sample, $1 Poverty Line

Distribution ssr sea wssr aic bic

Lognormal 23.0 28.4 17.2 19.6 20.0
Gamma 26.7 33.2 22.3 25.2 25.5
Weibull 27.6 32.8 23.8 26.0 26.3
Fisk 27.8 30.0 33.0 27.3 27.5
Beta 2 19.9 24.7 16.4 15.5 16.0
Singh–Maddala 20.2 25.6 19.7 16.7 17.2
Dagum 22.1 25.3 18.6 19.2 19.7
Gaffney et al. (1980) 22.1 24.5 18.4 19.2 19.7
Fernandez et al. (1991) 22.9 27.1 19.4 19.3 19.8
Maddala and Singh (1977) 19.0 27.3 18.0 14.8 15.3
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forms fit better observed income distributions if the corresponding estimated
elasticities do not significantly differ from those obtained under lognormality.

The comparison of mean and median values realized in Section 3 suggests that
the use of lognormality may lead to an overestimation of the growth and inequality
elasticities. However, this finding is questionable since we have shown in the
preceding section that no single functional form should be employed to describe
such a heterogenous sample of income distributions as ours. Thus, from our point
of view, a more adequate approach consists of creating mixed series that include,
for each observed income distribution, the value of the elasticity that corresponds
to the best performing functional form according to the chosen goodness-of-fit
criterion.42 Here, these series are only based on the ssr, sae and wssr criteria, the
latter being our benchmark for reasons explained earlier. The composition of these
series is indicated by the first three columns of the top panel of Table 9. So, they are
mainly constituted by values obtained through the beta distribution of the second
kind and the curves proposed by Maddala and Singh (1977), Kakwani (1980) and
Arnold and Villaseñor (1989).

The mean and median values of these mixed series are reported at the bottom
of Tables 4 to 7 (see also Table 13 for the whole sample). The comparison of mean
values suggests that the lognormal assumption generally entails an underestimation
of the magnitude of the elasticities whatever poverty line and poverty measure are
chosen. However, differences are not significant at the 10 percent confidence level
when considering mean values, but the results are driven by the presence of few very
large values in the mixed series. On the contrary, the converse phenomenon can be
observed with respect to median differences. Here, we observe that lognormality
tends to overestimate what we suppose to be the real magnitude of the growth and
inequality elasticities of poverty. From a statistical point of view, median differences
are most of the time significantly different from zero for the growth elasticities of
poverty, but the picture is more uncertain with the Gini elasticities of poverty: while
the mixed series inequality elasticities of the headcount index are significantly lower
than the one computed under lognormality, the statistical significance vanishes once
the poverty gap and the squared poverty gap are used. Nevertheless, the difference
exceeds 2 points whatever measure and poverty line is considered.

Of course, misestimation is doubtless a matter of concern, but we can imagine
that this bias may easily be corrected if lognormal elasticities are highly correlated
with their real values. To test this assumption, we have plotted in Figures 1 and 2
the couple of values stemming from the lognormal and mixed-wssr elasticity series
for each observed income distribution from the sample. The plots help to appre-
ciate how weak are the links between the two series, in particular for the growth
elasticities. On each subfigure, the correlation coefficients have been reported.
They clearly show that the correlation between lognormal and the mixed series
based on the wssr criterion is rather low, ranging from 0.3 to 0.6.43 Interestingly,
one can observe that correlations are weaker for the growth elasticities of poverty,
but that they increase significantly with the poverty line (without being large

42As a robustness test, we have also constructed series corresponding to second-rank estimations
according to the different criteria. Results for these second-best series, not reported here, do not differ
from those obtained with best-fitting series.

43The same values are observed with the mixed series based on the ssr, sae, aic and bic statistics.
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enough). In general, these results indicate that simulations based on the lognor-
mality assumption should be considered with extreme caution.44

Finally, even if the lognormal distribution is not adequate for the prediction
of individual growth and inequality elasticities of poverty, we may think that it can
be used to assess the relative effectiveness of pure growth and pure distributional
objectives to achieve poverty alleviation. In Section 2.1 (equation 7), we have
noted that the ratio of the growth to Gini elasticities is independent of the relative
distribution of income under assumption (4) when the headcount index is consid-
ered.45 However, this is not the case for the other members of the family of poverty
measures Pa. In order to check whether the lognormal assumption biases policy
recommendations in favor of growth or distributional objectives, we can use the
ratio of the lognormal elasticities ratio to the one corresponding to mixed series,

that is, ϒ =
η η
η η

α μ α

α μ α
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M
, where the exponents L and M denote elasticities obtained

within the lognormal and mixed series respectively. A value greater (lower) than
unity for this policy bias ratio ϒ indicates that the lognormal assumption bias
politics toward the growth (inequality reduction) objective.

44Such risks are perfectly illustrated in CGE models by Boccanfuso et al. (2008).
45Of course, this result does not hold if another redistribution process is assumed.
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Figure 1. Comparison of the Estimated Elasticities of Poverty between Lognormal Distribution and
wssr Series, U.S.$1 Poverty Lines
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Figure 3 presents a Gaussian kernel density estimation of the density of the
ratio ϒ for the measures P1 and P2. On average (vertical plain lines), it seems that
the use of the lognormal distribution yields a pro-growth bias, in particular for the
measure P2, but this result is mainly due to the presence of extreme values of the
ratio as shown by the median values (vertical dashed lines). However, the values of
ϒ are heavily spread around the value of one. For instance, we can notice that the
relative importance of the growth elasticity can be overestimated or underesti-
mated in excess of 50 percent under lognormality.

This large variance may be explained by the presence of middle-income
countries in which poverty rates are generally very low. As the various functional
forms used in the mixed series behave very differently at the bottom quantiles of
the population, we can assume that the lognormal distribution is a more
adequate choice when the sample is shrunk to low-income countries. To test this
hypothesis, we have performed a non-parametric estimation of the mean of this
ratio conditional to the level of per-capita income.46 The output is reported in
Figure 4 and confirms only partially that assumption. We can observe that the
growth effect tends to be overestimated comparing to the inequality effect as

46Estimations are realized with a Gaussian kernel. The value of the bandwidth is chosen using the
cross-validation procedure.
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Figure 2. Comparison of the Estimated Elasticities of Poverty between Lognormal Distribution and
wssr Series, U.S.$2 Poverty Lines
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per-capita income exceeds a level between $1,500 and $2,500. However, it should
be noted that the converse phenomenon often occurs for some intervals under
$1,000 mean income value. All these results are statistically significant at the 5
percent level.

Finally, we have tried to see whether the variability of the ratio U could also
be attributed to varying performances of the lognormality assumption with the
degree of inequality. Results of a non-parametric estimation of the mean of our
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Figure 3. Gaussian Kernel Density of the Policy Bias Ratio for P1 and P2 (lognormal against wssr
mixed series)

Note: Vertical solid and dashed lines respectively correspond to mean and median values. On
each subfigure, the optimal value of the bandwidth has been chosen using the cross-validation
technique.
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policy bias ratio conditional to the initial value of the Gini index are reported in
Figure 5. They show no significant bias for highly unequal countries, but we can
note that the relative effect of growth is overestimated with respect to inequality
reduction under the lognormality hypothesis when the Gini coefficient is less than
a threshold of 0.42–0.45. As more than 60 percent of our sample includes distri-
butions which exhibit a Gini index of less than 0.45, this result cannot be regarded
as trivial.
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Figure 4. Sensitivity of the Policy Bias Ratio to GDP per capita for P1 and P2 (lognormal against
wssr mixed series): non-parametric regression

Note: The thick curve corresponds to the Gaussian kernel estimation of the conditional mean
of the politicy bias ratio ϒ . The shaded area represents the 95% confidence interval of this
conditional mean using a bootstrap procedure (1,000 replications, optimal bandwidth determined
with a cross-validation procedure).
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6. Concluding Remarks

The consequent diversity of observed income distribution shapes and per-
capita incomes across the world logically results in heterogenous responses of
poverty to growth and inequality variations. In order to take this heterogeneity
into account when formulating anti-poverty programs for some countries or
groups of countries, the best solution is to use formulas like the one proposed by
Kakwani (1993) to compute growth and inequality elasticities for each income
distribution, each measure and each poverty line. However, the fact remains that

(a) z = U.S.$1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

P1

Gini coefficient

ra
tio

0.
5

1.
0

2.
0

0.2 0.3 0.4 0.5 0.6 0.7 0.8

P2

Gini coefficient

0.
5

1.
0

2.
0

(b) z = U.S.$2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

P1

Gini coefficient

ra
tio

0.
5

1.
0

2.
0

0.2 0.3 0.4 0.5 0.6 0.7 0.8

P2

Gini coefficient

0.
5

1.
0

2.
0

Figure 5. Gini Index vs Policy Bias Ratio for P1 and P2 (lognormal against mixed-series wssr):
non-parametric regression

Note: The thick curve corresponds to the Gaussian kernel estimation of the conditional mean
of the political bias ratio ϒ . The shaded area represents the 95% confidence interval of this
conditional mean using a bootstrap procedure (1,000 replications, see note 29).
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it is still difficult to get empirical income distribution data for a large set of
developing countries directly from household surveys. As a consequence, most
studies (Bourguignon, 2003; Epaulard, 2003; Kalwij and Verschoor, 2005) rely on
so-called secondary datasets, like the one used in this paper, combined with some
distributional assumption whose relevance is generally not questioned.

Two questions are of interest. Which distributional assumption is the most
adequate for the estimation of growth and inequality elasticities of poverty when
the information concerning the relative distribution of income is incomplete? What
are the risks associated with the use of a functional form that does not properly fit
available data?

Our results show that no clear and definite answer can be given to the first
question. Of course, some functional forms yield much more precise estimations
than less flexible ones, but none of the rival forms that have been tested in the
present study performs better than the others for a major part of the distribu-
tions in our sample. Pragmatism is surely the solution and authors should be
advised not to impose systematically the same distributional assumption to the
observed distributions used in their cross-country or panel studies, but to choose
the best performing form among a defined pool of functional forms using some
adequate goodness-of-fit criterion. Some may argue that we should turn to more
flexible functional forms like the generalized beta distribution McDonald and
Xu (1995) or Bernstein polynomial function sequences Ryu and Slottje (1996).
However, most functional form entails the use of non-linear estimators that
often cannot provide efficient estimations in the presence of local extrema.
Moreover, the most flexible forms employed in our study perfectly illustrate how
difficult it can be to comply with the whole set of validity conditions that should
be met in the context of poverty analysis.

Concerning the second question, we have also shown that the use of a rigid
functional form yields poor estimations of the growth and inequality elasticities
of poverty in most cases. Here we choose to focus on the statistical distribution
that is the most widely used to describe income distributions, i.e. the lognormal
distribution. Our findings imply that the results of most cross-country poverty
studies based on the lognormal assumption should be considered with caution.
Indeed, lognormal growth and inequality elasticities generally tend to overesti-
mate the values corresponding to each observed income distribution. Moreover,
the use of the lognormal assumption does not allow for a good appreciation of
the relative merit of growth and redistribution objectives in terms of poverty
alleviation. For instance, we have found that it generally entails a bias in favor
of a mean-income growth objective in middle-income or not much unequal
countries.

Finally, one can be surprised at economists’ intensive use of the lognormal
distribution, although many more flexible functional forms have been proposed in
the literature. Because of its empirical weaknesses, shall this statistical distribution
be relegated to the historical section of inequality and poverty textbooks? Our
point of view is that we may still employ the lognormal distribution in economic
models so as to illustrate the distributive effects of any policy measure or market
imperfection for instance. However, it would be wise to rule it out from empirical
studies in favor of more flexible statistical distributions.
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Appendix A: Description of the Sample

The World Income Inequality Database (WIID) is a secondary dataset based
on many datasets of within-countries income inequality, such as Deininger and
Squire (1996).47 Its 2.0b version includes information from 1867 to 2005 for 153
countries. About one half of the observations, that is 2,850 observations, contain
information on the share of total income by quantile of population. Our sample
has been constructed using observations from this set that comply with the
following two conditions:

• The original survey should be designed so that representativity is ensured
by the geographical coverage of the survey. Rural or urban surveys have
been consequently removed.

• The original survey should be designed so that representativity is ensured
by the population coverage of the survey. In particular we chose to discard
surveys that only consider the working age population.

In a few cases, data that seem not to be reliable have been removed. The final
sample contains 1,132 observations. It is important to note that the comparability
of the observation is limited since they are not all based on the same income
definition and unit of analysis (cf. Table 11). This is particularly true for consump-
tion data that generally underestimate income inequalities but are more reliable
measures of well-being (Atkinson and Bourguignon, 2000; Deaton and Zaidi,
2002). It could be interesting to reduce the sample to the sole expenditure or
income observations, but it may bias our results since these characteristics are not
randomly distributed. For instance, data from Latin American countries are gen-
erally based on income series whereas African data are essentially based on con-
sumption. The geographic and period distribution of the observations is reported
in Table 12.

47For a discussion about the drawbacks of these secondary datasets, see Atkinson and Brandolini
(2001).

TABLE 11

Composition of the Sample by Unit of Analysis and Income
Definition

Category Frequency

Income definition
Consumption 278
Gross income 373
Net income 356
Othersa 125

Unit of analysis
Person 737
Household/family 395

Note: aIncome is either gross or net, but the survey is insuffi-
ciently documented.
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Appendix B: Additional Tables and Figures

TABLE 13

Mean Values of Growth and Gini Elasticities of P0, P1 and P2: Whole Sample

Distribution

Growth Elasticity Gini Elasticity

P0 P1 P2 P0 P1 P2

$1 poverty line
Lognormal -3.68 -4.02 -4.25 43.97 55.02 65.2

(0.12) (0.12) (0.12) (2.17)* (2.36)* (2.76)*
Gamma -1.52 -1.59 -1.63 15.2 24.3 33.09

(0.08)‡ (0.08)‡ (0.08)‡ (0.92)‡ (1.02)‡ (1.2)‡

Weibull -1.18 -1.23 -1.25 10.69 19.61 28.42
(0.05)‡ (0.05)‡ (0.05)‡ (0.54)‡ (0.68)‡ (0.83)‡

Fisk -2.11 -2.22 -2.28 19.88 28.79 37.64
(0.03)‡ (0.03)‡ (0.03)‡ (0.62)‡ (0.83)‡ (1.03)‡

Singh–Maddala -1.93 -2.04 -2.29 17.54 26.23 38.43
(0.08)‡ (0.07)‡ (1.01)* (0.91)‡ (0.95)‡ (23.53)

Dagum -2.35 -2.53 -2.57 23.72 33.3 42.52
(0.75) (0.81) (0.75) (14.82) (13.61) (13.59)

Beta 2 -4.27 -4.56 -4.78 52.19 62.83 72.26
(0.52) (0.51) (0.53) (8.37) (8.62) (9.25)

Mixed (ssr) -3.93 -6.15 -5.78 41.82 66.12 101.54
(3.71) (6.55) (13.18) (39.76) (76.15) (104.94)

Mixed (sea) -3.99 -5.65 -6.74 37.7 74.25 97.86
(3.76) (8.91) (10.64) (42.76) (74.64) (106.65)

Mixed (wssr) -4.37 -6.61 -7.31 48.09 71.89 104.63
(3.76) (7.28) (11.21) (36.4) (90.56) (108.21)

$2 poverty line
Lognormal -2.62 -2.96 -3.21 15.27 20.66 25.79

(0.09) (0.09) (0.1) (0.84) (0.91) (1.04)
Gamma -1.32 -1.43 -1.49 6.46 11.04 15.44

(0.07)‡ (0.08)‡ (0.09)‡ (0.45)‡ (0.5)‡ (0.56)‡

Weibull -1.05 -1.14 -1.18 4.69 9.07 13.49
(0.05)‡ (0.05)‡ (0.06)‡ (0.27)‡ (0.32)‡ (0.41)‡

Fisk -1.81 -1.98 -2.08 8.62 13.11 17.56
(0.04)‡ (0.04)‡ (0.04)‡ (0.31)‡ (0.41)‡ (0.51)‡

TABLE 12

Distribution of the Data by Period and Region

Period EAP LAC NA MENA SA SSA EECA WE Total

1960–64 23 27 0 2 15 8 1 18 94
1965–69 28 21 8 3 20 16 2 22 120
1970–74 35 32 11 2 17 1 2 35 135
1975–79 27 25 7 4 11 7 1 28 110
1980–84 28 26 0 1 9 6 1 25 96
1985–89 28 48 0 5 18 27 10 7 143
1990–94 34 63 0 4 6 56 29 0 192
1995–99 23 79 0 8 8 36 63 0 217
2000–05 2 14 0 1 3 3 2 0 25

Total 228 335 26 30 107 160 111 135 1,132

Note: EAP: East Asia and Pacific; LAC: Latin America and Caribbean; NA: North America;
MENA: Middle East and North Africa; SA: South Asia; SSA: Sub-Saharan Africa; EECA: East
Europe and Central Asia; WE: West Europe.
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TABLE 13 (continued)

Distribution

Growth Elasticity Gini Elasticity

P0 P1 P2 P0 P1 P2

Singh–Maddala -1.63 -1.79 -2.12 7.58 12.03 18.25
(0.07)‡ (0.08)‡ (0.95)* (0.43)‡ (0.47)‡ (8.47)*

Dagum -1.7 -1.84 -1.96 7.97 12.39 16.95
(0.21)‡ (0.22)‡ (0.22)‡ (1.43)‡ (1.57)‡ (1.35)‡

Beta 2 -2.76 -3.1 -3.31 15.93 21.43 26.27
(0.27) (0.29) (0.3) (2.28) (2.28) (2.47)

Mixed (ssr) -2.2 -3.29 -4.62 11.33 19.08 28.44
(1.58) (2.77) (8.27) (5.26) (7.49) (19.58)

Mixed (sea) -2.22 -3.09 -3.99 10.83 18.7 29.3
(1.66) (5.39) (6.76) (4.32)* (8.64) (9.1)

Mixed (wssr) -2.39 -3.18 -3.92 12.48 20.06 26.86
(0.39) (0.8) (1.46) (2.31) (4.45) (10.12)

Notes: Standard errors in parentheses. Symbols *, † et ‡ indicate that the value is significantly
different at the 10, 5 and 1% levels from the estimated mean value under lognormality. For a definition
of the series mixed (ssr), mixed (sea) and mixed (wssr), see Section 5.

TABLE 14

Goodness-of-Fit, Mean and Median Values: Restricted Sample, U.S.$2 Poverty Line

Distribution ssr sae wssr aic bic

Mean value
Lognormal 9.58 3.35 11.49 6.42 6.21
Gamma 44.58 7.84 49.28 28.45 27.68
Weibull 45.62 8.57 51.20 29.42 28.58
Fisk 7.13 2.91 7.26 4.79 4.63
Singh–Maddala 1.42 1.30 1.57 1.18 1.15
Dagum 1.67 1.41 1.94 1.35 1.33
Beta 2 1.91 1.40 2.47 1.63 1.60
Gaffney et al. 1980) 1.41 1.27 1.57 1.14 1.13
Fernandez et al. 1991) 1.60 1.44 1.81 1.29 1.27
Maddala and Singh (1977) 1.00 1.00 1.00 1.00 1.00

Median value
Lognormal 4.97 2.56 5.53 4.37 3.87
Gamma 34.33 6.86 35.94 27.16 25.24
Weibull 42.91 8.06 50.25 35.24 32.13
Fisk 4.02 2.18 4.19 3.10 2.84
Singh–Maddala 1.33 1.21 1.53 1.15 1.10
Dagum 1.41 1.26 1.74 1.23 1.19
Beta 2 1.23 1.18 1.34 1.06 1.02
Gaffney et al. 1980) 1.26 1.16 1.45 1.09 1.06
Fernandez et al. (1991) 1.48 1.32 1.82 1.28 1.23
Maddala and Singh (1977) 1.00 1.00 1.00 1.00 1.00

Notes: the sample represents 87% of the whole sample. Mean value of income per capita is $3,523
and average Gini coefficient is 0.42.
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