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Several aggregation methods, including the EKS, start by calculating bilateral Fisher indices. Prices
and quantities are, however, subject to measurement error. This stochastic behavior, which implies both
unequal variances, and non-zero correlations, between different Fisher indices, has to be taken into
account if optimal estimates of aggregate PPPs are to be derived from the Fisher indices. This paper
provides estimates of the variance/covariance structure of the Fisher indices, under two alternative
models for stochastic variation at basic heading level: and it applies these formulae to the 1996 OECD
data set, illustrating that the Fisher indices for this data set are indeed highly correlated. The 
paper also establishes a general theoretical result, proving that the EKS is optimal for a particular 
variance/covariance structure involving non-zero correlations, and hence shows that the standard 
EKS aggregation method is likely to be near optimal for the 1996 OECD data set.

1. INTRODUCTION

The aggregation problem is concerned with how to produce estimates of
comparative real GDPs, given data on prices and quantities at individual item or
commodity level. This paper is concerned with multilateral aggregation techniques
which start from the bilateral Fisher index. In particular, recognizing that the indi-
vidual item level price and quantity observations are subject to errors of observa-
tion, it assesses what the implications of these errors are for the variance and
covariance structure of the bilateral Fisher indices: it then goes on to examine 
the implications of this variance/covariance structure for aggregation techniques
based on the Fisher index.

The notation used in this paper is that there are I items, and J countries, and
that

The bilateral Fisher volume index, denoted here by Fjk, is defined as the geomet-
ric mean of the Laspeyres and Paasche volume indices, Ljk and Pjk, so:

 F L Pjk jk jk= [ ]0 5. ,
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where:

and

The Fisher index is often regarded as having ideal properties in bilateral com-
parisons: (see also Balk (1995), for a discussion of the Fisher index in relation to
axiomatic price theory). For multilateral comparison purposes, however, straight-
forward application of the Fisher index is not possible, since the Fisher index does
not satisfy the important criterion of transitivity: that is, in general,

One general approach to the aggregation problem is to attempt to approximate
the structure of the bilateral set of Fisher indices by means of a transitive (that is,
multiplicative), model. Equivalently, if the logarithms of the bilateral Fisher
indices are taken, then the log Fisher indices can be regarded as being determined
in terms of a linear model, of the following form,

(1)

where the cj are unknown parameters, and the ejk are unknown error terms. The
parameters in model (1) can be estimated by regression techniques, giving 
estimates ĉj, say: the required multiplicative approximation to the structure of the
original Fisher indices is then given by

If the errors ejk in equation (1) are uncorrelated, and of equal variance, then 
the estimation of the parameters cj by standard regression gives estimators ĉj

satisfying

where this equation is to be interpreted in terms of the convention that yjj = 0, and
ykj = -yjk, k > j. (This result is well known, and is easy to prove from first princi-
ples, by setting up the normal equations for the standard regression estimator, and
then verifying that the estimator ĉj satisfies these equations.) The estimator is
equivalent to the well known EKS estimator, defined as

The EKS (or Elteto Koves Szulc) method of aggregation was developed by Elteto
and Koves (1964) and Szulc (1964); the method was independently anticipated by
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Gini (1924), and is therefore sometimes referred to as the GEKS method. See Hill
(1997), for a discussion of the EKS in relation to a taxonomy of aggregation
methods.

If the errors ejk are written in the form of a vector e of length then

another way of expressing the assumption that the ejk terms are uncorrelated and
of equal variance is to say that the variance/covariance matrix of this vector is
proportional to the identity matrix: i.e. var(e) = s 2I, where s 2 is an unknown vari-
ance parameter, and I is the identity matrix. However, in practice, the error terms
ejk in equation (1) are neither likely to be of equal variance, nor to be uncorre-
lated: in other words, in general,

(2)

where E is some positive definite symmetric matrix, with unequal diagonal terms
(the variance terms), and at least some non-zero terms in off-diagonal positions
(i.e. at least some non-zero correlations between error terms).

The problem then arises, of how to estimate the parameters in equation 
(1), when the variance/covariance matrix of the error terms has the more general
form in equation (2). The theoretical answer to this problem, when the matrix 
E is known, is given by the technique of Generalized Least Squares (GLS) 
(see Johnston and Dinardo, 1997). GLS theory states that, for a linear model 
y = Xb + e, where var(e) = s 2E, then the best linear unbiased estimator of the 
parameter vector b is given by the GLS estimator

equivalently, if E-1 is expressed in terms of a matrix W as E-1 = W¢W, as can always
be done, then b can be estimated by the application of Ordinary Least Squares to
the transformed model

In the special case where E is a diagonal matrix (which corresponds to uncorre-
lated errors in the original model), then this last formula corresponds to the famil-
iar application of weighted regression, with weights inversely proportional to the
standard errors of the error terms in the original model.

While GLS supplies the appropriate theory for optimal estimation of the coef-
ficients in equation (1), two problems remain. Firstly, there is the problem of deter-
mining the correct form of the variance/covariance matrix E. Secondly, there 
is the problem of deriving the GLS estimator, if E has a complicated form. This
paper is concerned with both of these problems. Firstly, the theoretical form of
the variance/covariance matrix of the errors in equation (1) is derived: this is done
for two specific models, each specifying a different assumption about the form 
of stochastic variation at the level of the individual item. Second, the actual 
variance/covariance structure of the log Fisher indices is estimated, for each of
these models, using the 1996 OECD comparison data set. It is shown that the
assumption of uncorrelated errors is very far from holding. A general theoretical
result is also established, proving that the EKS is optimal for a particular 
variance/covariance structure involving non-zero correlations. In the light of this
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result, it is shown that the conventional EKS estimator is still likely to be near
optimal for the OECD data set.

Historically, an early stochastic formulation for the variance of the log Fisher
index, together with the use of these variances as weights in a weighted log Fisher
regression, was given by Cuthbert and Cuthbert (1988). This, however, was for the
degenerate form of the Fisher index used in aggregating up to basic heading level;
nor did this work take into account the covariances between the log Fisher indices.

More recently, Rao (2001) described a weighted EKS approach, both for
aggregation below basic heading level, and from basic heading up. Rao’s approach
implicitly assumes that the variance/covariance structure of the log Fisher terms
is diagonal. He discusses a number of possible approaches to the derivation of the
appropriate weights, including measures based on the spread between the Paasche
and Laspeyres indices, on the economic distance between countries, and on mea-
sures of similarity in price structure. These approaches suffer, however, from not
being directly related to a model of how the variance of the log Fisher relates to
the basic stochastic structure of the data, as well as not taking into account the
off-diagonal correlations of the log Fisher indices.

The approach taken in this paper is primarily based on a stochastic approach
to index numbers: that is, a model based approach which takes into account 
the implications of various forms of measurement error or uncertainty. Other
approaches, like the axiomatic approach, or the economic approach are possible:
see, for example, Balk (2001), for a recent discussion of different possible
approaches. See also Diewert (1995), for a critique of the stochastic approach
(though a somewhat more narrowly based stochastic approach than that consid-
ered here).

In the real world, consideration of the random elements in the estimation of
purchasing power parities seems inescapable; items will normally be sampled, and
measurement of prices and expenditures will be subject to random measurement
errors. In the view of the author, therefore, it is important to consider the 
stochastic properties of any given index number formulation: this is what this
paper is concerned with. This, however, is not inconsistent with the idea that the
ultimate rationale underlying a particular formula may be based on considerations
originating in the axiomatic or economic approaches to index numbers. In other
words, in the author’s view the stochastic approach is complementary to the
axiomatic and economic approaches, rather than being in opposition to these
approaches.

2. THE VARIANCE AND COVARIANCE STRUCTURE OF

THE LOG FISHER INDEX

The individual price and quantity observations pij and qij are, of course,
subject to various forms of measurement and estimation error; in this paper,
two basic models are developed to describe the stochastic structure of these 
observations.

Under Model 1, it is assumed that the starting point is independent observa-
tions of prices and quantities, and that the observed pij and qij are related to under-
lying true values, p

.
ij and q

.
ij, by the following relationships:
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where the errors of observation fij and gij are independent, and var(fij) = sP
2,

var(gij) = sQ
2.

This model describes a situation where, for each country, 95 percent of the
price observations are within ±200sP percent of the true underlying value, and 
95 percent of the quantity observations are within ±200sQ percent of the true
underlying value. The variance parameters sP

2 and sQ
2 are assumed to be

unknown.
Model 1, as described in the previous paragraph, represents probably the sim-

plest model possible for the stochastic structure of the individual observations.
However, the model 1 situation, where the price and quantity data are estimated
independently, often does not hold in the real world. What often happens in prac-
tice is that it is prices and expenditures which are estimated directly for each item,
and quantities are derived by dividing expenditures by prices. Model 2 describes
this situation. If expenditure on item i in country j is denoted by eij, then under
model 2 it is assumed that the observed pij and eij are related to underlying true
values, p

.
ij and e

.
ij, by the following relationships:

where the errors of observation fij and lij are independent, and var(fij) = sP
2,

var(lij) = sE
2.

Under either of the above models, the individual Fisher index terms Fjk have
a stochastic structure; and the variance/covariance structure of the Fjk can be
derived theoretically.

As before, let yjk = log(Fjk); the variance and covariance terms involving yjk are
denoted by

Then approximations to these variance and covariance terms are given by the 
following formulae, under model 1 and model 2 respectively:
Model 1

(3)
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and

(4)

Formula (3) holds for j π k; note that v( j, j) = 0.
Formula (4) holds when j, m and n are all different; note that

Finally, note that cov(log(Fjk), log(Fmn)) = 0 for j, k, m and n all different; that is,
the full covariance matrix of the log(Fjk) terms contains large blocks which are
structurally zero.
Model 2

(5)

(6)

The conditions for structural zeros, etc., are the same as for equations (3) and (4).
The derivation of these formulae is given in Appendix 1.
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Note that the choice between model 1 and model 2 depends not on which
model fits the observed data better, but rather on which model better describes the
way the data have been collected. If prices and quantities have been observed
directly, then model 1 is the more appropriate. However, if quantities are derived
from expenditure data, then the more complex model 2 is relevant.

The formulae (3) to (6) above were applied to the data set used in the 1996
based OECD comparison exercise. (I am grateful to the OECD for making the
data available to me.) The full results of the 1996 based OECD comparison exer-
cise are published in OECD (2000).

This data set comprises observations on 207 items, and 32 countries; for the
purposes of the present exercise, however, the data on the three balancing items
(net changes in stocks, purchases abroad, and net exports), were excluded, so the
data set used comprised 204 items. For simplicity, the results have been expressed
in terms of correlations, rather than covariances, where the correlation coefficient
r( j, m, n) is defined as

Since the values of sP
2, sQ

2 and sE
2 are not known, the formulae were computed

using a range of illustrative values of these parameters. Specifically, the implica-
tions of “high accuracy” and “low accuracy” variance assumptions were assessed.
For the “high accuracy” assumption, the relevant variance parameters were
assumed to be 0.000025 (which corresponds to 95 percent of the observations 
on the given quantity lying within ±1 percent of the true value.) For the “low 
accuracy” case, the relevant variance parameters were assumed to be 0.0025 (which
corresponds to 95 percent of the observations lying within ±10 percent of the true
value). All possible combinations of high and low accuracy assumptions were con-
sidered; i.e. for model 1, the combinations of (sP

2, sQ
2) considered were (0.000025,

0.000025), (0.000025, 0.0025), (0.0025, 0.000025) and (0.0025, 0.0025); and corre-
spondingly for (sP

2, sE
2) under model 2.

For each model, and for each possible pair of variance parameters, the above
equations give estimates of 496 variance terms, and 14,880 correlation terms. There
is therefore a presentational problem about displaying the results of the calcula-
tions in a user-friendly fashion. Fortunately, it turns out that the variance/
covariance structure as estimated from the data is relatively simple, and is well
described by a small number of summary statistics. These summary statistics are
given in Table 1, and are as follows.

Table 1A shows the average log Fisher standard error (that is, the average of
the terms ), for all possible parameter combinations, and for each model.
As would be expected, the average standard errors increase with both variance
parameters, for both models. While the standard errors in the two models are fairly
comparable when both variance parameters are at the “high accuracy” level, model
2 is rather more sensitive to “low accuracy” in the variance parameters.

Table 1B gives an indication of the spread of the standard error terms, in
terms of the ratio of the maximum to the minimum estimated log Fisher standard
errors, for each model, and for each pair of parameter values. These ratios indi-
cate that the standard errors are moderately homogeneous: for sP

2 = 0.000025, the

v j k,( )

r j m n
j m n

v j m v j n
, ,

, ,
, ,

.( ) =
( )

( ) ( )
co

75



largest standard error is just less than 50 percent bigger than the smallest; for sP
2

= 0.0025, the largest standard error is usually less than twice the smallest.
All of the estimated correlation terms (excluding structural zeros), were 

positive, except for the combination of low price accuracy and high quantity 
accuracy under model 1, when there were a few negative correlations. Table 1C
shows the average correlations. Note that these averages are all larger than 0.4,

76

TABLE 1A

AVERAGE LOG FISHER STANDARD ERROR

Model 1 Model 2
sQ

2 sE
2

sP
2 0.000025 0.0025 0.000025 0.0025

0.000025 0.0011 0.0105 0.0013 0.0105
0.0025 0.0041 0.0112 0.0081 0.0132

TABLE 1B

RATIO MAX/MIN LOG FISHER STANDARD ERROR

Model 1 Model 2
sQ

2 sE
2

sP
2 0.000025 0.0025 0.000025 0.0025

0.000025 1.38 1.3 1.47 1.31
0.0025 2.99 1.4 1.8 1.49

TABLE 1C

AVERAGE LOG FISHER CORRELATION

Model 1 Model 2
sQ

2 sE
2

sP
2 0.000025 0.0025 0.000025 0.0025

0.000025 0.45 0.483 0.454 0.483
0.0025 0.244 0.45 0.405 0.453

TABLE 1D

RATIO MAX/MIN LOG FISHER CORRELATION

Model 1 Model 2
sQ

2 sE
2

sP
2 0.000025 0.0025 0.000025 0.0025

0.000025 2.18 2.44 1.93 2.43
0.0025 * 2.18 2.32 1.93

*In this case, with high precision quantity measurement, and
low precision price measurement under Model 1, there are some neg-
ative correlations, so calculation of this ratio is not meaningful.



except for the combination of low price accuracy and high quantity accuracy
under model 1. In other words, the correlations between the individual log Fisher
terms are indeed typically very material.

Table 1D shows the ratio of the maximum to minimum correlations, except
for the case involving the combination of low price accuracy and high quantity
accuracy under model 1, for which it is not meaningful to calculate this ratio
because there are some negative correlations. It will be noted that the correlations
are homogeneous, with the largest typically being about twice the smallest.

Although the detailed results have not been given here, most of the largest
standard errors tend to involve one of a relatively small group of countries as one
member of the country pair. This group of countries includes Mexico, Russia,
Spain, Luxembourg and Hungary.

Overall, the summary statistics illustrate that the variance/covariance struc-
ture of the log Fisher indices is relatively simple, under both of the models con-
sidered here. The log Fisher standard errors are relatively homogeneous. The
correlation terms (other than structural zeros), are typically all positive, and are
relatively homogeneous.

The summary statistics also illustrate one feature which has potentially impor-
tant implications for the strategy of data collection. Under model 2 (that is, when
expenditures are measured directly rather than quantities), the log Fisher standard
errors are more sensitive to the precision with which prices are collected than under
model 1.

The results highlight the need for accuracy in data collection: particularly in
collecting price data when model 2 is used. Since one way of increasing sample
sizes, and reducing observer error, is through increased use of scanner data for
certain items, this suggests that increased collection of scanner data would be
useful. In another area, since regional, as opposed to international, price level com-
parisons are likely to be based on relatively small regional samples, which are there-
fore likely to be subject to greater imprecision, this points to the need for caution,
and to the need to make explicit estimates of precision, in making regional 
comparisons.

3. IMPLICATIONS FOR ESTIMATION TECHNIQUES

The question then arises: given the estimated variance/covariance structure of
the log Fisher indices, what is the optimal GLS estimator corresponding to this
structure? There are two reasons for approaching this question cautiously:

(1) The technical difficulty of deriving an exact GLS estimator.
(2) Since knowledge of the variance/covariance structure is based on esti-

mates, it is probably more sensible to look for a robust approximation to
the required GLS estimator, which will be close to the optimal estimator,
but which will not be subject to the problem of having to recalculate a
new GLS estimator from scratch for every new data-set.

The approach adopted here, therefore, is to see whether there is a simplified, “ide-
alized,” structure for the variance/covariance matrix, for which it is possible to
derive the appropriate GLS estimator; and then to examine what loss of efficiency
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is involved in moving from this simplified approximation to the actual variance/
covariance structure.

Given that the observed variance/covariance structure, as described in the pre-
vious section, has diagonal (variance), terms which are moderately homogeneous,
and off-diagonal (correlation), terms that, apart from structural zeros, are posi-
tive, and are also usually moderately homogeneous, the natural idealized version
of the variance/covariance structure to consider is as follows:

(7.1)

(7.2)

(7.3)

The idealized variance/covariance structure described in equations (7) therefore
involves constant diagonal (variance) terms, and constant, and positive, off diag-
onal correlations, apart from the structural zeros implied by (7.3).

The following theorem derives the appropriate GLS estimator, for estimating
the parameters in the model at (1) above, when the variance/covariance structure
of the error terms in the model is as set out in equations (7).

Theorem 1

Consider the regression model

Define yjj = 0 for all j, and ykj = -yjk, for k > j.
Suppose that the variance/covariance structure of this extended set of {y} values
satisfies the conditions of equations (7) above.

Then the GLS estimator of (cj - ck) is given by

Proof

The proof of this result, which depends on a symmetry argument, is given in
Appendix 2.

The GLS estimator in Theorem 1 is, of course, equivalent to the standard
EKS estimator. The importance of this result is that, even though the idealized
variance/covariance structure, for r π 0, is very far from satisfying the conditions
of uncorrelated errors under which the EKS formula can be derived as noted 
in para 1.4, nevertheless, the EKS is still optimal for the idealized structure in 
equations (7).

Note also that, since the argument in the proof of Theorem 1 still holds when
r = 0, Theorem 1 also provides an alternative derivation of the standard EKS
formula in the case of uncorrelated errors (though in this case the Theorem 1 proof
is much more complicated than is necessary).
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It is relatively straightforward, but involves some manipulation, to derive the
variance of the estimator ĉj - ĉk, under the variance assumptions of equations (7).
This is given by

(8)

This compares with the expression for the variance of the EKS estimator under
the assumption of uncorrelated errors, which would be

(9)

For r > 0, the variance at (8) is larger than the variance at (9).
The next question to be considered is: how great is the change in efficiency

when the EKS is applied to a model with the variance/covariance structure as esti-
mated in section 2 above, compared with when it is applied with the idealized struc-
ture at (7). It is straightforward, but tedious, to show that the variance of the log
EKS estimator, under either model 1 or model 2, is given by

The ratio of the relative standard errors of the EKS was then calculated, under
the estimated and “idealized” structures. For any pair of countries, j and k say,
this ratio is given by the (square root of) the ratio of the expressions in formulae
(10) and (8) above.

This expression was calculated for each pair of countries, using the values of
v( j, k) and co(n, j,k) as estimated from the data in Section 2, and with values of v2

and r corresponding to the observed average values estimated for the relevant case.
A value of this ratio less than 1 means that the EKS is more efficient under the
actual variance/covariance structure than under the idealized structure, and vice
versa.

Table 2 gives summary statistics for the calculation of these relative efficiency
terms. For each case, the lowest and highest values of the above ratio are given.
As can be seen, for most of the cases considered, there is little change in the effi-
ciency of the EKS under the actual as compared with the idealized variance/
covariance structure. For seven of the eight cases considered, the maximal increase
or decrease in efficiency is of the order of 10 percent (and it is worth remarking
that what are recorded here are the values of the extreme country pairs; for most
of the 496 country pairs considered for each case, the change in efficiency is close
to 1). Only for one case, (model 1, sP

2 = 0.0025, sQ
2 = 0.000025), is there a change

in efficiency for some country pair exceeding 15 percent.
More detailed examination of the results (not recorded here), shows that there

is a fairly consistent pattern, with country pairs involving Russia or Mexico in par-
ticular tending to have values of the above ratio consistently above 1 (i.e. the EKS
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is consistently less efficient for such countries under the actual as opposed to the
idealized structure). This corresponds to the fact, as already noted, that the esti-
mated log Fisher variance for country pairs including these countries tends to be
relatively large.

Overall, however, the main point to note is that there is generally only a small
change in the efficiency of the EKS on moving from the idealized variance/
covariance structure to the estimated variance/covariance structure.

This provides strong circumstantial evidence that the EKS estimator is 
likely to be of close to optimal efficiency for the estimated variance/covariance
structure. The argument for this conclusion is as follows. The optimal GLS esti-
mator for the estimated variance/covariance structure is not known, nor is its 
efficiency. But the efficiency of this estimator is unlikely to be much greater than
the efficiency achieved by the EKS estimator for the idealized variance/covariance
structure, for which the EKS is known to be optimal. Since the EKS’s efficiency
does not change much when it is applied to the estimated variance/covariance
structure, this implies that the EKS is likely to be close to optimal for this struc-
ture too.

The argument above provides a strong case for the application of the EKS
estimator to the particular 32 country data set analysed here, compared with 
any other estimator which is linear in the yjk terms. In addition, another 
advantage is that application of the EKS does not involve complex calculations 
to derive an exact GLS estimator each time a new data set is considered; and use
of the EKS also means that the estimator used is not sensitive to instability 
due to the estimation error involved in estimating the variance/covariance 
structure.

In intuitive terms, these conclusions make a good deal of sense. The group of
countries involved in the OECD comparison exercise is a relatively homogeneous
group of advanced economies. It is not very surprising that, for a fairly homoge-
neous group like this, an equally weighted average like the EKS turns out to be
close to optimal among all techniques which are linear in the log Fisher indices.
Whether similar conclusions apply to more heterogeneous groups of countries
would require to be established by further empirical work.
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TABLE 2

RELATIVE EFFICIENCY OF EKS UNDER ACTUAL AND IDEALIZED
V/C STRUCTURE

Model 1 Model 2
sQ

2 sE
2

sP
2 0.000025 0.0025 0.000025 0.0025

Lowest observed value for any country pair
0.000025 0.892 0.883 0.925 0.883
0.0025 0.69 0.891 0.923 0.914

Highest observed value for any country pair
0.000025 1.091 1.092 1.01 1.092
0.0025 1.292 1.089 1.14 1.086



4. CONCLUSION

The fact that there are errors of estimation inherent in the measurement of
prices and quantities (or prices and expenditures), imposes a probabilistic (or sto-
chastic), structure on the set of Fisher indices. Optimal estimation of volume rel-
ativities based on the Fisher indices should then take account of this stochastic
behavior. If the logarithms of the Fisher indices are considered, then the log Fisher
indices will be linear functions of the unknown country volume levels (together
with stochastic errors). In this case, the estimation problem is optimally handled
by the technique of Generalised Least Squares: the particular GLS estimator
which is optimal will be a function of the variance/covariance structure of the log
Fisher indices.

The relevance of this paper is as follows:
(1) For two alternative models (relating to two different possible approaches

to the collection of the basic data), it derives the relevant formulae for the
variance/covariance structures of the individual log Fisher indices.

(2) It applies these formulae to the 1996 OECD data, to give empirical esti-
mates of the variance/covariance structure of the log Fisher indices for
this data set; and shows that, for both stochastic models, while there are
indeed material correlations between the log Fisher indices, their vari-
ance/covariance structure nevertheless has a fairly simple form.

(3) Separately, for an idealized variance/covariance structure which is a fairly
close approximation to the variance/covariance structure actually ob-
served, it shows that the standard EKS estimator is in fact the optimal
GLS estimator.

(4) It estimates the change in efficiency for the EKS estimator, on moving
from the idealized variance/covariance structure (for which the EKS is
optimal), to the actual variance/covariance structure; and shows that the
change in efficiency is marginal. This provides good circumstantial evi-
dence that the EKS estimator is likely to be close to optimal for this 
particular data set.

Probably the most striking implication of the above conclusions is the support that
these findings give for the EKS method, at least in the context of the specific data
set on which the empirical evidence in this paper is based: that is, the OECD96
data set. It should be remembered, however, that these empirical findings relate to
this particular data set. Of greater long term relevance are likely to be the theo-
retical results summarized in (1) and (3) above, which are of general applicability.
Also of potential long term significance is the fact that the empirical approach
adopted here could be applied to other data sets, to give an indication of how close
the EKS is likely to be to optimal efficiency for these data sets.

APPENDIX A: DERIVATION OF FORMULAE

FOR VARIANCES AND COVARIANCES

(1) The derivation of formulae (3) to (6) makes use of a number of properties of
variances and covariances which, for convenience, are listed here first.
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(a) If x and y are positive random variables with expected values mx and my, then

(A1)

(A2)

(where “�” denotes “is approximately equal to”.)
Proof. Expanding log(x) in a Taylor series implies that

which implies that E[log(x)] � log(mx),

and that 

from which (A1) follows on taking expectations.
The proof of (A2) is similar on considering the Taylor expansions of log(x)

and log(y).

(b) Let x1, x2, . . . , xn and y1, y2, . . . , yn be two sets of random variables, where,
for i1 π i2, xi1 is independent of xi2, and yi1 is independent of yi2. Then

(A3)

(A4)

(These are standard results.)

(c) Let x be a positive random variable with expected value mx and variance 
mx

2s 2: then

(A5)

(A6)

Proof. Taking a Taylor expansion of x-1 implies that

from which (A5) follows on taking expectations. Further, it implies that 

from which (A6) follows on taking expectations.
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Model 1

(2) Assume the assumptions of model 1 hold. Then

The evaluation of a typical term in this expression is illustrated: for example,

by (A1).

It follows that

however, the terms p
.
ij and q

.
ij are unknown: so as a final approximation, p

.
ij and q

.
ij

are replaced by pij and qij in this expression, giving
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Each of the terms in the above expression for v( j, k) can be evaluated similarly,
(using (A2) and (A4) at the appropriate stages for the covariance terms, rather than
(A1) and (A3)), hence establishing formula (3).

(3) The derivation of formula (4) for the covariance co( j, m, n) proceeds by an
exactly analogous argument.

Model 2

(4) The derivation of v( j, k) for model 2 starts with the same expression for v( j,
k) as set out at the beginning of paragraph (2) above. The derivation of a typical
term in this expression is illustrated, under the assumptions of model 2, as follows.

The term chosen for illustrative purpose is As before,

so what is required is to evaluate E(pijqik) and var(pijqik) under the assumptions of
model 2.
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and thus

The other terms in v( j, k) are evaluated similarly, so establishing formula (5): the
derivation of formula (6) for the covariance co( j, m, n) proceeds by an exactly
analogous argument.

APPENDIX B: PROOF OF THEOREM 1

(1) Consider the regression model

The parameters in this model are not identified, up to an additive constant. It is
sufficient to identify the parameters to impose the single identifiability constraint

Subject to this constraint, the model is then fully identified; so, by the

theory of GLS, there exists a unique minimum variance linear unbiased estimator
of the parameters. This means, in particular, that the estimator of c1, denoted as
ĉ1, can be written in the form

for some constants ajk, where the terms ajk are uniquely defined (and do not depend
on the y values).

(2) Now, consider what happens if, keeping the position of country 1 fixed, the
order in which the remaining countries has been numbered is permuted. (For
example, instead of writing, say, USA = country number 1, France = country
number 2, Germany = country number 3, . . . , instead USA = country number 1,
Germany = country number 2, = France country number 3.) Rearranging the
ordering of countries, like this, gives an alternative expression of the original
regression model, with a new parameter vector, c*, say, which is a permutation of
the original parameter vector c (and with c1* = c1, since the position of country 1
has not been altered); with a new observation vector, y* (which is a function of
the original observation vector y); and with a new error vector, e* (which is a func-
tion of the original error vector e).

(3) The special feature which is the key to the proof of Theorem 1 is that, in 
terms of the new ordering of the countries, this new regression model can be
written
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In other words, the new model can be written as

where the design matrix, X, is identical to the design matrix of the original 
regression model y = Xc + e. Moreover, it is clear from the equations (7) that the
variance/covariance matrices of the vectors e and e* are identical; and, further,
since the c* terms are a permutation of the c terms, the c* terms satisfy the 
constraint

In other words, the re-written regression model is formally identical (having the
same design matrix, variance/covariance structure and identifiability constraint),
to the original model: so, in particular, it follows that

where the coefficients ajk are the same as the coefficients in the definition of ĉ1 in
paragraph (1) above.

Moreover, permuting the ordering of later countries will clearly have no effect
on the estimation of the parameter relating to country 1: in other words, ĉ1* = ĉ1.
That is, the following identity must hold, namely

(B1)

where identity (B1) must hold for all possible observation vectors y (and the terms
ajk do not depend on y).

(4) Now suppose that the particular permutation involved in the alternative regres-
sion model has involved switching the positions of countries m and (m + 1), for
some m > 1, leaving the positions of all other countries in the ordering fixed. Then,
for this particular permutation, the terms yjk* are defined in terms of the terms yjk

by the following relationships:

(5) Recall that the identity at (B1) holds for all possible observation vectors y. Con-
sider the hypothetical observation vector y which consists entirely of zeroes, apart
from the single term ym(m+1), which is 1. Substituting this y vector (and the corre-
sponding values of y* from paragraph (4), into (B1), it follows that
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that is,

(B2)

(6) For a selected j < m, consider the hypothetical observation vector y which con-
sists entirely of zeroes, apart from the single term yj(m+1), which is 1. Substituting
this y vector (and the corresponding values of y* from paragraph (4), into (B1),
it follows that

(B3)

(7) Since m was selected arbitrarily in the range 1 < m < J, it follows that (B2) 
and (B3) hold for all m in this range. (B3) implies that the upper triangular array 
{ajk, k > j}, is constant along its rows: and (B2) implies that all the rows of this array,
apart from the first row, must consist of zeros. In other words, ĉ1 is of the form

(8) Another permutation argument is now used to derive the general form of ĉj.
Suppose that countries (1) and (j) are permuted in the original selection of coun-
tries, giving a new set of observations denoted as y*, and a new parameter vector
c* (where c1* = cj). Again, this permutation has no effect on the design matrix,
covariance structure, or identifiability constraint of the regression model, so it
follows that

However,

So

Taking the expectation of this expression, it follows that

Therefore E(ĉj - ĉk) = aJ [cj - ck]:
so (ĉj - ĉk) is an unbiased estimator of (cj - ck), (which it must be), if, and only if
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