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The conventional formula for estimating the extended Gini coefficient is a covariance formula pro-
vided by Lerman and Yitzhaki (1989). We suggest an alternative estimator, obtained by approximat-
ing the Lorenz curve by a series of linear segments. In a Monte Carlo experiment designed to assess
the relative bias and efficiency of the two estimators, we find that, when using grouped data with 20
or fewer groups, our new estimator has less bias and lower mean squared error than the covariance
estimator. When individual observations are used, or the number of groups is 30 or more, there is
little or no difference in the performance of the two estimators.

1. INTRODUCTION

A generalization of the Gini coefficient, called the extended Gini coefficient,
was introduced by Yitzhaki (1983) to accommodate differing aversions to
inequality. While a number of algebraically-equivalent formulae have been
described in the literature for estimating the original Gini coefficient (for example,
Nygård and Sandström, 1981, Table 8.1; Creedy, 1996, pp. 10, 20), estimation of
the extended Gini coefficient seems to have been confined to a covariance formula
suggested by Lerman and Yitzhaki (1989). We suggest an alternative estimator,
obtained by approximating the Lorenz curve by a series of linear segments. The
covariance formula and our linear-segment estimator, are identical for the orig-
inal Gini coefficient, but are not equal in general for the extended Gini coefficient.
Thus, for the original Gini coefficient, any choice between the two estimators is
made on the basis of computational convenience only. For the extended Gini
coefficient, however, both computational convenience and estimator sampling
properties are important considerations. In a Monte Carlo experiment that we
conduct, the two estimators have similar properties when calculated from individ-
ual observations; when calculated from grouped data, our new estimator outper-
forms the covariance estimator in terms of both bias and mean-squared error.
Our results have relevance not just for estimation of the extended Gini coefficient,
but also for estimation of social welfare measures that are dependent on the
extended Gini coefficient. See, for example, Lambert (1993, pp. 123–30).

In Section 2 we introduce required notation and describe two versions of the
original Gini coefficient. In Section 3 we present the extended Gini coefficient
and its corresponding covariance estimator, and go on to derive our alternative

Note: The authors are grateful to a referee whose comments on an earlier version led to a substan-
tial improvement of the paper.
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estimator, leaving some of the details to an appendix. The set-ups and results of
the Monte Carlo experiment are described in Section 4 and some summary
remarks are made in Section 5.

2. THE GINI COEFFICIENT

Let πGF (x) represent the distribution function for income x and let η G

F1(x) be the corresponding first moment distribution function. The relationship
between η and π, defined for 0⁄xFS is the Lorenz curve. We denote it by η G

L(π). The much-used Gini coefficient is equal to twice the area between a 45-
degree line and the Lorenz curve. That is,

(1) GG1A2 �
1

0

L(π) dπ.

It can also be written as (see, for example, Lambert, 1993, p. 43):

(2) GG−1C
2

µx
�
S

0

xF (x) f (x) dx

G
2

µx

cov{x, F (x)}

where µxGE(x) is mean income and f (x)GdF (x)�dx is the density function for
income.

Algebraically-equivalent discrete versions of equations (1) and (2) are often
used to estimate G. To introduce the notation necessary to describe these two
estimators, suppose that income data have been sampled and classified into M
income groups. The estimators that we describe can be used with grouped data
or with individual observations. In the case of individual observations, M is the
number of observations, and, in what follows, there is one observation in each
‘‘group’’, with the proportion of observations in each group being piG1�M.
Given this level of generality, we assume the following information is available
for the i-th group:

1. Average income xi .
2. The proportion of observations pi .
3. The cumulative proportion of observations πiGp1Cp2C· · ·Cpi .
4. The proportion of income φiGpixi�∑M

jG1 pjxj .
5. The cumulative proportion of income η iGφ1Cφ2C· · ·Cφi .

Also, let x̄G∑M

iG1 pixi denote the sample mean income.
As noted by Lerman and Yitzhaki (1989), the discrete version of (2) that

provides an estimator for G, is

(3) Ĝ1G
2

x̄
∑
M

iG1

pi (xiAx̄)(π̂iAπ̄)

where π̂iG(πiA1Cπi )�2 and π̄G∑M

iG1 piπ̂i .
To obtain a discrete version of equation (1) to use as an estimator for G, the

Lorenz curve L(π) is approximated by a number of linear segments, with the i-th
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linear segment being a straight line joining (πiA1 , η iA1) to (πi , η i ). Then, the area
defined by equation (1) can be estimated by aggregating the areas between the
linear segments and the 45-degree line. This process leads to another familiar
expression for the Gini coefficient:

(4) Ĝ2G ∑
MA1

iG1

η iC1πiA ∑
MA1

iG1

η iπiC1 .

It can be shown that Ĝ1GĜ2. However, when the estimation principles used to
obtain Ĝ1 and Ĝ2 are applied to the extended Gini coefficient introduced by
Yitzhaki (1983), they yield estimators that are, in general, not identical. Previous
literature has focused on a covariance formula similar to Ĝ1 (Lerman and
Yitzhaki, 1989). The purpose of our paper is to derive an expression for the
extended Gini counterpart of Ĝ2 and to compare the bias and efficiency of the
two alternative estimators via a Monte Carlo experiment.

3. A NEW ESTIMATOR FOR THE EXTENDED GINI COEFFICIENT

The extended Gini coefficient can be written as

(5) G(û)G1Aû(ûA1) �
1

0

(1Aπ)ûA2L(π) dπ

G1A
û

µx
�
S

0

x[1AF (x)]ûA1f (x) dx

(6) G− û

µx

cov {x, [1AF (x)]ûA1}

where û is an inequality aversion parameter. The coefficient G(û) is defined for
ûH1 and is equal to the original Gini coefficient when ûG2.

The covariance-formula estimator, given by the empirical discrete version of
equation (6) is (Lerman and Yitzhaki, 1989):

(7) Ĝ1(û)G−û

x̄
∑
M

iG1

pi (xiAx̄)[(1Aπ̂i )
ûA1Am]

where mG∑M

iG1 pi (1Aπ̂i )
ûA1.

To derive an alternative estimator obtained by approximating the Lorenz
curve in equation (5) with a series of linear segments, we write the equation of a
linear segment from (πiA1 , η iA1) to (πi , η i ) as η GciπCdi where ciGφi�pi and
diG(πiη iA1AπiA1η i )�pi . Then, a linear-segment approximation to G(û) is given
by:

(8) Ĝ2(û)G1Aû(ûA1) ∑
M

iG1
��

πi

πiA1

(1Aπ)ûA2(ciπCdi ) dπ� .

In the appendix we show that this expression reduces to:

(9) Ĝ2(û)G1C ∑
M

iG1
�φi

pi
�[(1Aπi )

ûA(1AπiA1)
û ].
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This expression is a relatively simple one which is easy to calculate, despite the
tedious algebra necessary to derive it. Its sampling properties are assessed in
Section 4. It can be shown that Ĝ1(û)GĜ2(û) if ûG2. However, in general, the
two estimators are not identical.

4. THE RELATIVE PERFORMANCE OF THE TWO ESTIMATORS

Given the existence of two reasonable alternative estimators for the extended
Gini coefficient, their relative sampling performance is of interest. To evaluate
this performance, we report the results of a Monte Carlo experiment with two
hypothetical income distributions. One distribution is a lognormal distribution
where log(x) is normally distributed with mean µG5 and standard deviation σG

1.5. The second distribution is one suggested by Singh and Maddala (1976), with
distribution function

πGF (x)G1A
1

�1C�xb�
a

�
q

aG0.84, bG400, qG2.4.

Both these distributions exhibit a similar and relatively high level of inequality
with, approximately, G(1.33)G0.43, G(2)G0.71 and G(5)G0.92. Monte Carlo
results were also obtained for other parameterizations, with lower levels of
inequality. These results are available from the authors upon request. They lead
to the same conclusions as the results reported here.

The other dimensions over which sensitivity was assessed were the value of
û and the number of income groups. For û, we used ûG(1.33, 1.67, 2, 3, 5).
Sampling performance was evaluated by drawing 5000 samples, each of size 2000,
from each distribution. In addition to using the individual observations (MG

2000), results were obtained for three income groupings, MG(10, 20, 30).
The results from the Monte Carlo experiment appear in Tables 1 and 2. The

bias of the two estimators appears in Table 1. Their relative variance, and their
relative mean-squared error appear in Table 2. Values of relative variance and
mean-squared error greater than one imply the covariance estimator Ĝ1(û) is out-
performing our linear-segment estimator Ĝ2(û).

From Table 1 we can make the following observations about bias:
1. The bias of both estimators is always negative, reflecting the fact they

implicitly assume no inequality within each group.
2. When MG2000, both estimators have negligible and almost identical

bias; the bias is also relatively small for MG30.
3. The absolute bias of the covariance estimator is never less, and often

substantially more, than the absolute bias of the linear-segment estimator.
4. The relative performance of the linear-segment estimator improves the

further is the departure of û from 2, and the smaller the number of groups
M.

From the results in Table 2, we see that the lower bias for the linear-segment
estimator comes at a cost of higher variance. Since a comparison of biases favors
the linear-segment estimator, and a comparison of variances favors the covariance
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TABLE 1

BIAS OF THE ESTIMATORS

û

Groups Estimator 1.33 1.67 2 3 5

Lognormal
MG10 Ĝ1(û) −0.020 −0.013 −0.010 −0.012 −0.021

Ĝ2(û) −0.016 −0.012 −0.010 −0.008 −0.007

MG20 Ĝ1(û) −0.009 −0.005 −0.003 −0.004 −0.007
Ĝ2(û) −0.007 −0.004 −0.003 −0.003 −0.002

MG30 Ĝ1(û) −0.006 −0.003 −0.002 −0.002 −0.003
Ĝ2(û) −0.004 −0.003 −0.002 −0.002 −0.001

MG2000 Ĝ1(û) −0.002 −0.001 −0.001 −0.001 −0.000
Ĝ2(û) −0.002 −0.001 −0.001 −0.001 −0.000

Singh–Maddala
MG10 Ĝ1(û) −0.024 −0.015 −0.011 −0.013 −0.022

Ĝ2(û) −0.020 −0.014 −0.011 −0.009 −0.008

MG20 Ĝ1(û) −0.012 −0.007 −0.005 −0.005 −0.007
Ĝ2(û) −0.010 −0.006 −0.005 −0.004 −0.003

MG30 Ĝ1(û) −0.008 −0.005 −0.004 −0.003 −0.004
Ĝ2(û) −0.007 −0.005 −0.004 −0.002 −0.002

MG2000 Ĝ1(û) −0.005 −0.003 −0.002 −0.001 −0.001
Ĝ2(û) −0.004 −0.003 −0.002 −0.001 −0.001

TABLE 2

RELATIVE VARIANCE var [Ĝ2(û)]�var [Ĝ1(û)] AND RELATIVE MEAN SQUARED

ERROR MSE [Ĝ2(û)]�MSE [Ĝ1(û))]

û

Groups 1.33 1.67 2 3 5

Lognormal
MG10 1.038 1.003 1.000 1.024 1.087

(0.815) (0.964) (1.000) (0.715) (0.178)

MG20 1.031 1.003 1.000 1.007 1.025
(0.955) (0.996) (1.000) (0.940) (0.494)

MG30 1.021 1.002 1.000 1.003 1.012
(0.993) (0.999) (1.000) (0.983) (0.791)

MG2000 1.008 1.001 1.000 1.000 1.000
(1.006) (1.000) (1.000) (1.000) (1.000)

Singh–Maddala
MG10 1.039 1.003 1.000 1.026 1.097

(0.874) (0.975) (1.000) (0.772) (0.204)

MG20 1.035 1.004 1.000 1.007 1.029
(0.978) (0.998) (1.000) (0.954) (0.537)

MG30 1.023 1.002 1.000 1.003 1.013
(1.003) (1.000) (1.000) (0.986) (0.814)

MG2000 1.012 1.001 1.000 1.000 1.000
(1.010) (1.001) (1.000) (1.000) (1.000)

Note: The relative MSEs appear in parentheses below the relative variances.
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estimator, a mean-squared error comparison is useful. The results using this
criterion appear in parentheses in Table 2. These results show that:

1. For MG30 and MG2000 the performance of the two estimators is very
similar except when ûG5 and MG30, where the linear-segment estimator
is noticeably better.

2. For MG10 and MG20 the linear segment estimator is always better, and
sometimes very much better than the covariance estimator.

5. SUMMARY

An estimator for the extended Gini coefficient has been derived by approxi-
mating the Lorenz curve by a series of linear segments. This estimator is simple
to compute and has less bias than a covariance-based estimator that has been
used in the literature. For grouped data where the number of groups is 20 or
less, it also has lower mean-squared error than the covariance estimator. The
experimental evidence is sufficiently strong to recommend that, for grouped data
where the number of groups is 20 or less, practitioners should use our new esti-
mator in preference to the covariance estimator. If the number of groups is 30 or
more, or individual observations are available, both estimators perform equally
well. Finally, it should be emphasized that both estimators require knowledge of
arithmetic mean income in each group. For situations where these values are not
available, the effect of using an alternative, such as the class midpoints, still needs
to be investigated.

APPENDIX

In this appendix we show that equation (8) can be simplified to equation (9).
The summation in equation (8) can be written as:

∑
M

iG1
��

πi

πiA1

(1Aπ)ûA2(ciπCdi ) dπ�G ∑
M

iG1

[I1(i)CI2(i)]

where:

I1(i)Gci �
πi

πiA1

π(1Aπ)ûA2 dπ

G
−ci

ûA1
[πi (1Aπi )

ûA1AπiA1(1AπiA1)
νA1]A

ci

û(ûA1)
[(1Aπi )

ûA(1AπiA1)
û ]

I2(i)Gdi �
πi

πiA1

(1Aπ)ûA2 dπG− di

ûA1
[(1Aπi )

ûA1C(1AπiA1)
ûA1].
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Substituting for ci and di , and adding these two equations, yields, after some
algebra,

I1(i)CI2(i)G− 1

ûA1
[η i (1Aπi )

ûA1Aη iA1(1AπiA1)
ûA1]

− 1

û(ûA1) �
φi

pi
�[(1Aπi )

ûA(1AπiA1)
û ].

Summing this expression over all groups, we obtain:

∑
M

iG1

[I1(i)CI2(i)]G− 1

û(ûA1)
∑
M

iG1
�φi

pi
�[(1Aπi )

ûA(1AπiA1)
ûA1].

Substituting this expression into equation (8) gives the desired result.
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