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ACCOUNTING FOR RESOURCE DEPLETION: 

A MICROECONOMIC APPROACH 

McGill University 

The theoretical basis of a practical method of accounting for depletion of mineral resources is pre- 
sented. Rent rises at the rate of interest, but depletion does not. Rent is equal to the sum of depletion 
and depreciation less any opportunity cost of present production as compared to waiting. Depletion 
follows a path which is dependent on the depreciation formula chosen by the accountant. The 
approach is compared to the methods proposed by the BEA in 1994. 

In its system of satellite accounts, the U.S. Department of Commerce's 
Bureau of Economic Analysis (BEA, 1994) proposes methods to integrate natu- 
ral-resource use into the national accounts. The BEA's approach is possibly the 
most comprehensive of, but can be viewed as representative of a number of, such 
proposals. 

It is widely perceived that the shadow prices (user costs) obtained through 
the r-percent rule can be used to value stocks of minerals. For example, the BEA 
(1994: 54) observes of current rent estimates: "The simplest assumption . . . is 
based on Harold Hotelling's observation that in equilibrium, the price of the 
marginal unit net of extraction costs . . . should increase . . . at . . . the nominal 
rate of interest . . . [Tlhe value of the stock of the resource is independent of when 
it is extracted and is equal to the current per-unit rent of the resource times the 
number of units of the resource . . . [Two methods] use the current per-unit rent 
to value the resource and depletion." This seems to imply that the present value 
of depletion is equal to the value of reserves. 

As befits a subject related to the national accounts, most theorists discuss 
the appropriate measure of depletion in the context of macroeconomic models. 
In practice, the national accounts are aggregates of values obtained for sub-units 
such as firms. Although the BEA estimates aggregate values for the U.S. domestic 
extractive industry, the accounting approach reflects a microeconomic view of 
investment and extraction. 

The present paper utilizes a microeconomic model to gain insights into how 
to evaluate depletion in practice. Our results are reminiscent of a proposal by El 
Serafy (1989), but one difference is that we utilize an explicit optimization model. 
The user cost of the resource, which obeys the r-percent rule, is the depreciation, 
not of the resource, but of the mine. Separate values of the resource and capital 
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cannot be uniquely determined once capital is sunk. Rather, given a depreciation 
schedule, an undepreciated value of capital can be calculated. The remainder of 
the present value of the mine is the undepleted value of the resource, the rate of 
change of which is depletion. Our findings are compared to the BEA's proposals. 

Consider a mine at which capacity is determined at time t  = 0 and is not 
changed thereafter. Let the cost of installing capital, K, be $(K) ,  with $'(K)  > 0 
and $"(K) SO.' Also let the firm take known prices p(t) for its output q(t)  and 
have costs q"(q Lei T be the tiiiie tliiii iiiiiiiiig ceases 
S(t)  be the reserve at time t. The problem of the firm is to choose K, T and the 
production path to maximize the net present value of the mine,3 

subject to 

q(t)  = -S(t) and q(t)  < K. 

Following Campbell (l980), Cairns (1998, 1999) shows that, notwithstanding 
the fact that @ ( K )  is concave, this problem can be solved by an extension to 
control theory. In one stage, present value is maximized as in standard control 
theory but conditional on K. In a second stage, the optimal value of K is deter- 
mined through a constrained maximization. 

The current-value Lagrangean in the first stage is 

where u is the user cost of the resource, v r 0 is the shadow value of the capacity 
constraint, and v(K- q) = 0 by complementary slackness. The following hold: 

Condition (3) is the r-percent rule. It is related to Hotelling's rule, but is closer 
to the decisions on production and investment. Most importantly, it allows for 

'increasing returns to scale are common in extractive industry, and this last assumption is a 
simple way to represent them. Mase Westpac, Ltd. (1990: Ch. 6) depicts strictly concave investment 
costs for gold mining, for example. Bradley (1985: 322) cites elasticities of investment outlays to 
capacity in copper mining and milling in British Columbia of 0.85 and 0.60, respectively. Camm 
(1 9912) estimates that, for various types of mining and milling, $" < 0. 

A possible generalization would allow cost to be a function of cumulated extraction, reflecting 
depth within the mine, etc. It is well known that in this case rent does not rise at the rate of interest. 
We abstract from such effects to focus on implications of capacity constraints. Davis and Moore 
(1998) discuss this case in a context colnparable to that of the present paper. 

'1n equation (I), R[S(O), K, 01 is the capitalized value of Diaz and Harchaoui's (1997) "natural 
commodity," and @ ( K )  is cash expenditure related to preparing that resource for exploitation. It 
includes development expenditure. We abstract from exploration, which produces information of 
value to the economy as well as pinpointing a deposit for development. To avoid issues related to 
recycling we can assume (as is common, implicitly, in resource economics) that the resource is extingu- 
ished as soon as used. Examples would be uranium, coal or industrial diamonds. A dot over a variable 
represents the derivative with respect to time. Subscripts are used to denote partial derivatives. 



determining resource values even if (real) prices do not rise. The BEA (1994: 56) 
has to devise a special method to deal with this common occurrence. 

In the second stage, the first-order condition is 

Combining equations (1) through (4) yields that 

Only if the term in braces is zero does the initial value of the resource equal the 
resource stock valued at initial user cost. If $(K) is strictly concave, it may be 
that R[S(O), K] < u(O)S(O). Moreover, the remaining value at time t < T is 

V[S(t), K, t] = (pq - C) K'""" ds lcT 

Unless v + Cq - C/q = 0 for all s > t, V[S(t), K, t]#u(t)S(t). The BEA applies the 
so-called Hotelling valuation principle (Miller and Upton, 1985), by which V= 
US at any time. Cairns and Davis (1998) provide empirical evidence that the 
principle is not a valid guide to valuing gold reserves. 

The following formula is derived in Appendix I in a way inspired by Lozada 
(1995). 

Total cost, not output valued at marginal cost, appears in equation (5). In many 
models, much is made of the difference between so-called Hotelling rents (at the 
margin, due to resource scarcity) and Ricardian rents (inframarginal, due to dim- 
inishing returns). The distinction is not pertinent in our present values of net cash 
flows. Rearranging equation ( 5 )  yields 



User cost must cover depreciation of the program value, -V, plus a second term, 
which we interpret as the gain (opportunity cost) of not waiting an instant dt 
before pursuing the same path at a possibly different level of net cash flow. For 
convenience of discussion, suppose that net cash flow is a function of time because 
of a (sufficiently long) trend in price. If p > 0, the opportunity cost is that of not 
waiting for higher (real) prices. If p < 0, then there is an opportunity cost of 
waiting. User cost uq is the depreciation of the program plus the opportunity 
cost. 

It seems reasonable to believe that trends in real metals prices have been 
nonpositive in recent decades and will remain so for the foreseeable f ~ t u r e . ~  As a 
consiuni piice is usualiy assumed by mining engineers in their decision-making 
(see any mining-engineering textbook), we take the case p = 0 as a benchmark. In 
this case, the resource rent is equal to the depreciation of the value of the mine. 

Let ~ ( t )  be what Baumol et al. (1982) call the payment to capital at time t. 
The present value of the payments to capital must equal the investment cost: 

$(K) = loT ~ ( t )  e P  dt. 

Since investment does not take place for t > 0, many paths [ ~ ( t ) ]  satisfy this con- 
dition. Once a schedule is chosen, the undepreciated value of capital assets at 
time t > 0 is 

A[S(t), K, t] = ~ ( s )  e-"" ') dt. lrT 
and the corresponding depreciation D[S, K, t] is the rate of decline of the asset 
value: 

(6) D[S(t), K, t] = -k[S(t), K, t] = ~ ( t )  - rA[S(t), K, t]. 

Then, 

$(K) = A[S(O), K, 01 = I D[S, K, t] dt: 
0 

the integral of the undiscounted depreciation is equal to the value of the invested 
capital. This fact is realized by the BEA (1994: 51, 52). 

Equivalently, a depreciation schedule satisfying condition (7) can be defined, 
from which A(S, K, t) can be obtained by integration, and then ~ ( t )  from equation 
(6). This is the usual procedure in practice. 

We can define the payment to the resource at any time to be the net cash 
flow less the payment to capital, so that the value of the resource stock remaining 
at time t is 

4 ~ l a r k  and Dunlevy (1996) provide some empirical evidence of the non-increasing trend. Such a 
trend does not contradict the theory of exhaustible resources, which predicts rising real prices only 
toward the time of exhaustion of world reserves. We are not near that point with respect to any 
commonly used mineral. 



Thus, V[S(t), K, t] = A[S(t), K, t] + R[S(t), K, t] at any time. Since ~ ( t )  can, within 
limits, be chosen, there is no necessary link between R[S(t), K, t ]  and u(t). 
Depletion A[S(t), K, t] at time t is the rate of decline of the resource value, or 

(8) A[S, K, t] = -R[S, K, t] = [pq - C(q, K )  - K] - rR[S, K, t]. 

Comparably to the result in equation (6), the term -rR[S, K, t], interest on the 
stock of the resource, appears in the expression for depletion. Neglecting it is one 
oversight in the BEA's (and others') approach. Postponing extraction means that 
there is no depletion currently, but also that the current interest on the resource 
value is forgone. Equation (8) can be rearranged to show that 

Net cash flow is equal to the sum of depreciation, depletion and interest on the 
(undepreciated) values of capital and the resource. We stress that the relative sizes 
of these four variables depend on the chosen depreciation schedule. 

Using equation (5) ,  we can write 

Contrary to many models, the user cost uq measures, not the depletion alone, but 
the sum of depletion, depreciation, and the opportunity cost of producing now 
rather than later. The reason is that it is the project (resource with capital) which 
produces economic value; once the capital is sunk, the value of the resource can 
be separated only artificially from the value of the capital. When pfO, the oppor- 
tunity cost JTpq e-'("-" ds is a part of the resource value V(S, K). In the bench- 
mark case, in which p = 0, the user cost is the sum of depreciation and depletion. 

We verify that 

Therefore, 



The integral of undiscounted depletion is equal to the value of the resource stock. 
This discussion puts the two types of assets, capital and reserves, on the same 
theoretical footing consistently with accounting theory, as the BEA (1994: 51, 52) 
seeks to do. 

If C(q, K) = cq, then q = K throughout the interval [0, TI (Crabbe, 1982). Let 
there be straight-line depreciation of capital on the interval [0, TI. Then, 

D(t) = $(K)/T; A(t) = (T- t)$(K)/T; k(t) = -D(t); 

Depletion does not grow at the rate of interest. Finally, 

The usefulness of this case in practice is that engineers assume a constant price 
and constant marginal costs in their planning. In the Appendix, some further 
examples are presented. We concur with Diaz and Harchaoui (1997: 472) that the 
two types of assets have different depreciation (depletion) patterns. The different 
conventions for the rate of depreciation can have complicated effects on the 
implied rate of depletion. Depletion rises at the rate of interest only if depreciation 
falls at the rate of interest. 

3. COMPARISON WITH BEA's PROPOSALS 

The BEA's (1994: 58-59) charts show wide ranges in values arising in their 
proposed methods. The largest spread is between Current Rent Methods I and 
11, the ones which most directly attempt to apply the theory of exhaustible 
resources. We now evaluate the BEA's methods. Recall that in the notation of 
our model: 

payment to capital = K; 

T 

undepreciated capital value = A = It K(S) e-'('-') ds; 

payment to resource = pq - C(q, K) - K; 

undepreciated resource value = R = [pq - C(q, K) - K] e-""-" ds; 

depletion = -R = pq - C(q, K) - K - rR; 

R ST [pq - C(q, K)] e?(' " ds A 
resource value per unit of reserves = - = -- 

S S s' 



I. Current Rent Method I (p. 55): 

per-unit resource rent = P4 - C(4, K) - K. 

4 

depletion = pq - C(q, K) - K; 

value of resource = S [P~-C(;.  K) - K] 

The proposed expression for depletion does not subtract the return on the 
resource value and hence is an overestimate of depletion. The expression for the 
rent assumes that [pq - C(q, K) - ~ ] / q  = u (the rent, or the value which rises at 
the rate of interest) at all times, which does not hold in general. Rather, the value 
of K depends on the chosen depreciation method. The expression for the resource 
value applies the (incorrect) Hotelling valuation principle. 

11. Current Rent Method I1 (p. 56): 

value of project = S p-7. K)]; 

value of resource = S [Pq - 7. K)] -A; 

rent per unit = 

q depletion = pq - C(q, K) 
S 

Current rent method 11 takes a current-period approximation of R/S to be the 
rent per unit, as opposed to u. The formula for depletion involves a value, AIS, 
which appears to be intended to be a measure of depreciation rather than the full 
payment to capital, K. Furthermore, YR is not subtracted. Therefore, depletion is 
overestimated. 

Current Rent Methods I and 11's inconsistency can be shown by subtraction: 

Suppose, for the sake of illustration, that q and K are constant. Then 

Therefore, RII - RI = K(YT- 1 + CT)/r .  The bias is positive, as depicted in the 
BEA's charts. 



111. Present-Discounted-Value Estimates (p. 56). Our model indicates what 
to do when prices do not rise according to Hotelling's rule. The BEA's proposed 
method incorrectly introduces a "discount factor" to be applied to the value of 
rent per unit obtained by the approximation in Current Rent Method 11. In fact, 
the method assumes that q = K (which is usually planned by engineers) and that 
v = 0. The overestimate leads the BEA to discount the figure determined for RIS 
in an ad hoc way. The BEA seems to realize that the estimate is high, but not 
why it is. 

IV. Replacement-Cost Estimates (p. 56). This method is an application of 
Adelman's (1990) perspective on the depletion of oil reservoirs. Suppose the rate 
of depletion of oil in a reservoir under naturai drive is a. Then the proposai is 
to apply a so-called barrel factor, a/(a+r),  to the gross rent per unit, 
[pq - C(q, K ) ] / q ,  and then to subtract per-unit exploration and development cost. 
Under natural exponential drive with a constant net price, 

from which, at any time, undepreciated exploration and development cost can be 
subtracted to give a value for the resource. But then, 

and resource depletion would be given by this value less current depreciation of 
exploration and development expenses. 

V. Transaction-Price Method (p. 57): 

V A  R 
per-unit resource rent = - - - = - 

S S S  

Provided the undepreciated capital stock, A,  is equal to the industry-wide average, 
this gives an estimate of the resource value divided by the stock, which is equal 
to the rent only in special circumstances. The formula for Vmust be applied to 
obtain the depletion. 

A forward-looking valuation is needed to determine depletion. First, an 
accounting depreciation schedule is chosen, from which a payment to capital is 
calculated. That payment is subtracted from projected net cash flow to yield a 
payment to the resource. The value of the resource is the present value of these 
projected payments. Accounting depletion is the negative of the rate of change of 
that value. Only if depreciation rules are contrived to allow it do unit depletion 
values rise at the rate of interest. 

In making the projections, the assumptions of mining engineers should be 
used. Usually, this will mean projecting a fixed, normal price of output and pro- 
duction at capacity for the life of the mine. 



APPENDIX 

Rate of Change of V[S(t), K, t] 

This derivation simplifies and extends to constrained optimization Lozada's 
(1995: 140-41, 151-2) derivation of a formula for the depreciation of the pro- 
gram. We make use of the necessary conditions that (i) v(K - q) = 0; (ii) LITe-rT = 
0; (iii) (d/dt)[e-"LIZ] = (a/dt)[e-rfLI,] on intervals on which q is continuous; and 
(iv) u = ru. 

+ J-lTe~r('-z){-r[p4 - C - uql+ - (pq - C) - ruq di [is l I 
= -144 + jcT$ (pq - q - - 0  ds. 

Depreciation Conventions 

Assume that C(q, K) = cq and thatp(t) = p is constant. Let k = p - C(K, K)/K. 
1. Exponential Depreciation. Since the project has a finite life, the formula for 

exponential depreciation must be modified. For some value, B(t), then, D(t) = 
6B(t) = - ~ ( t ) .  Hence, B(t) = b e-"', with boundary condition $(K) = S r ~ ( t )  dt, so 
that B(t) = $(K) e-"/(l - e-"1. Let 

The payment to capital is 

~ ( t )  = rA(t) + D(t) = [(r + 6) e-" - r e-"]$(K)/(I - e-6T), 
or 

say, where 
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