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DOES SAMPLE DESIGN MATTER FOR POVERTY 

RATE COMPARISONS? 

World Bank and Yale University 

Poverty comparisons- an increasingly important starting-point for welfare policy analysis-are almost 
always based on household surveys. Therefore they require that one be able to distinguish underlying 
differences in the populations being compared from sampling variation: standard errors must be 
calculated. This has typically been done assuming that the household surveys are simple random 
samples. However, household surveys are more complex than this. We show that taking into account 
sampling design has a major effect on estimated standard errors for well-known poverty measures. In 
our samples they increase by around one-half. We also show that making only a partial correction 
for sample design (taking into account clustering, but not stratification, whether explicit or implicit) 
can be as misleading as not taking any account of sampling design at all. 

Has poverty increased or fallen? Is urban or rural poverty higher? Will some 
proposed policy reduce or increase poverty? These are typical of the questions 
asked in poverty analyses. To provide answers, recourse to household surveys is 
required. However, surveys are not censuses. They are samples, with a size typ- 
ically numbering in the thousands of households from which conclusions concern- 
ing populations typically numbering in the millions must be drawn. Thus any 
comparative analysis must distinguish population differences from sampling varia- 
tion. A series of recent papers have stressed the importance of this and have 
provided the tools by which standard errors can be calculated (Howes, 1993; 
Kakwani, 1993; Pudney and Sutherland, 1994; Ravallion, 1994). The problem 
with these papers is that, in presenting statistical methods and results for use in 
poverty comparisons, they make the assumption that the household surveys being 
analyzed are simple random samples of the populations from which they are 
drawn. In fact, however, they are not. Household surveys are typically far more 
complex in their design, incorporating stratification and clustering. 

What are the implications for poverty analysis of complex survey design? 
Two main biases are introduced by ignoring sample design in calculating standard 
errors. On the one hand, ignoring stratification will lead to an overestimate of 
standard errors. This is because, with stratification, one ensures that no part of 
the sampling frame goes unrepresented. On the other hand, ignoring clustering 
will lead to an underestimate of standard errors if, as is typically the case, there 
is homogeneity within the cluster with respect to the variable of interest. The 
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intuition is the same as that for stratification: clustering leads to a less uniform 
coverage of the population, and so reduces precision. Since these biases run in 
opposite directions, we explore this issue using actual household surveys. In the 
two examples we provide, using formulae which assume simple random sampling 
leads to estimates of standard errors for poverty measures which are only two- 
thirds the size they should be. That is, ignoring sample design can make us think 
that our estimates are substantially more precise than they actually are. 

The next section describes the types of poverty measures we will be discussing. 
Section 3 sets out assumptions which characterize the design of many household 
surveys and then provides formulae for calculating standard errors which are 
consistent with these assumptions. Section 4 gives the two examples, and Section 
5 concludes. 

In this section, we consider the class of additive poverty measures. Although 
this class excludes some poverty measures, such as the Sen index, it includes many 
well-known measures, such as the head-count and the poverty gap. In addition 
to being widely used, comparisons of these two measures, over varying poverty 
lines, form the basis of, respectively, first and second-order stochastic dominance 
analysis (see Atkinson, 1987). Let n,= n(kj) be a measure of household poverty 
for the jth household, where kj= f(y,, X,). y, is total household income/consump- 
tion and X, is a vector of variables such as prices and household size which allow 
one to normalize y, such that households with equal k's are equally well off. In the 
simplest case, k, will be per capita nominal income, y,/hj, where h, is household size. 

A functional form for K(. ) is based on the indicator function, I(kj5k), where 
k is the poverty line. If the expression inside the brackets is false then I( .  ) is zero. 
If it is true then I( .  ) equals one if one is interested in poverty among households; 
it equals hj if one interested in the number of poor individuals. 

We can now define specific poverty measures. For the head-count ratio, 
n(k,) = I(kjsk). For the poverty gap, ~ ( k , )  = I(k,s k) * (1 - k,/k). More generally, 
the well-known and much-used FGT family is given by na(k,)= 
I(kjsk) * (1 -kj/k)" for a 2 0  (see Ravallion, 1994, for further details). 

The next step is to aggregate the n, into a summary poverty index. Define n 
as an estimator of this index. It is equal to an estimator, t ,  of "total poverty" 
(e.g. in the case of the head-count ratio, the total number of poor people or 
households), normalized by an estimator, p, of population size. As n is a ratio of 
two random variables, it is biased but consistent. 

The complexity of survey design is very easily incorporated into the calcula- 
tion of unbiased estimators of poverty indices. Suppose that we have a sample of 
N households, to each of which is attached an expansion factor or weight, w,. 
Given the correct choice of weights, an unbiased estimator of household poverty, 
for example, can be written 

(For individual-level poverty measures, replace w, by wjhj in the denominator.) If 
the sample is self-weighting, then w, is constant for all households and cancels. 
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In contrast to the calculation of poverty index estimates, to make any progress 
estimating sampling variances one must be explicit about the type of sample 
design. Sample designs can deviate in many ways from the classical model of 
the simple random sample. We set out below a set of assumptions which both 
approximate many household survey designs and yield tractable standard error 
formulae. (Deviations from these assumptions are discussed at the close of the 
section.) 

We allow for any number of explicit strata, with one stratum equivalent to 
no stratification, and further assume that the survey being analyzed: 

(i) is clustered, with selection of clusters by probability proportional to 
estimated size (ppes)-with probability proportional to size (pps) as a 
special case ; 

(ii) uses two-stage sampling selecting first clusters (e.g. villages or street 
blocks) and then households drawn at the second and final stage as the 
ultimate sampling units; 

(iii) was selected by random sampling with replacement (like blindly drawing 
a number from a hat and replacing it before the next draw) at the first 
stage ; 

(iv) was selected by systematic (every nth from a list) or random sampling 
at the second stage, with or without replacement, but with equal prob- 
ability of selection; and, 

(v) is self-weighting or has expansion factors which vary, at most, at the 
cluster level, due to the use of ppes and/or disproportionate 
stratification. 

For a discussion of these features, see Howes and Lanjouw (1997). 
Suppose the sample design divides the population into H strata ( H 2  1). In 

the hth stratum, let th be an unbiased estimator of total poverty in that stratum. 
Then 

Let there be Nh clusters in a given stratum from which nh cluster samples are 
chosen with replacement. Let Mhc be the true size of (number of households in) 
the cluster in the hth stratum from which the cth cluster sample is taken (the cth 
cluster for short). Let Zhc be the estimated size of the cth cluster. The total 
estimated stratum population size is Zh = XCZh,. Randomly select one cluster with 
probability proportional to estimated size, i.e. with probability Zhc/Zh, and 
sample mh, of the Mhc households. Define the cluster-level expansion factor, which 
is constant for all households, i, in cluster hc, as:' 

'ChC,Ci= C, and whci= w,, etc 



Note that whc takes into account any or both of disproportionate stratification 
and the use of ppes. (If pps is used, Zhc = Mhc and, assuming mh, to be constant 
within a stratum, the weights vary only between strata). Since the selection of 
clusters is random, any one cluster can be used to form an unbiased estimator, 
thc, of total poverty in the hth stratum 

Note that this is the mean of the ahci in the cth cluster times Zh * (Mhc/Zhc), the 
estimate of the size of the hth stratum based on cluster c. A more efficient estimator 
can be obtained by utilizing information from all cluster samples. From nh cluster 
samples we can construct a combined unbiased estimator of total poverty in the 
hth stratum as the unweighted mean of the th, : 

The population size estimator, p, is defined analogously to t. Replace ahci in (4) 
by either ones (if one wants a household poverty measure) or by hhci (if one is 
after a per capita poverty measure). Then phr is exactly analogous to thc and ph 
to th. 

These definitions can be combined with a Taylor's expansion to provide a 
consistent estimator of the variance of a (see Howes and Lanjouw, 1997, for 
details on the derivation). We know that a Taylor's expansion and the definition 
of a = t/p gives : 

(6) 
I 

VAr (n) =, [VAr (t) + n2 VAr (p) - 2a C8v (t, p)]. 
P 

In the simplest case when one has srs and is measuring household poverty, sop = 
N, the number of households, VAr (t) is the estimated element variance and ( 6 )  
simplifies to the standard formula : 

However, for the more complex and realistic sample design considered 
Howes and Lanjouw (1997) show, 

here, 

VAr (p) is defined analogously, and 

H H 1 nh 

(9) C ~ V ( ~ , P ) = C ~ ~ V ( ~ ~ , P ~ ) = C  x (thc - th)(~hc -ph)- 
h =  l h = l  nh(nh-1) c = l  
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This result, although little utilized in the poverty literature, has long been 
available with respect to sample means.' It is remarkable for its simplicity and 
useful for its very weak assumptions about sampling at the sub-cluster level. In 
particular, the variance formula takes no explicit account of sample variability 
within each cluster. The cluster estimates may be obtained using random sampling, 
with or without replacement, or systematic sampling. These formulae may also 
be used to calculate standard errors for poverty estimates for sub-populations of 
interest. 

We now briefly consider relaxing some of the initial assumptions to cover a 
wider range of sampling designs. Clustering is almost universal, but there may be 
more than one level of clusters (that is, more than two stages of sampling). This 
poses no problem as long as the first-level clusters are selected with replacement. 
One takes the number of clusters above as given by the number of these first-level 
clusters. In this case, expansion factors may not be constant within the clusters 
thus defined, since lower-level clusters may be chosen using ppes, but unbiased 
estimates of total stratum poverty from each first-level cluster can still be obtained. 
Likewise if individuals or groups of households are the ultimate sampling units. 
Hence assumption (ii) is easily relaxed. 

What if the absence of self-weighting is due to non-response (relaxing assump- 
tion (v))? If, as sometimes happens, non-response is corrected at the cluster level 
using weights, this is exactly analogous to having cluster weights due to ppes.3 
However in other cases, non-response is assumed to be a function of other-than- 
cluster-level variables, such as age groups. One is then left with weights which 
can vary within clusters. For discussion of this more difficult case see Hansen et 
al., 1953; Kish, 1965; and Pudney and Sutherland, 1994. The arguments of the 
latter authors would suggest there is little loss in accuracy from treating these as 
random weights and thus in the same way as expansion factors which vary within 
first-level clusters due to the use of multi-stage clustering (see the previous 
paragraph). 

We now come to the only restrictive assumption, (iii), namely that the sam- 
pling of clusters is random and with replacement. In fact, we know that many if 
not all surveys use systematic sampling at the first stage, including our two 
examples which follow. Why not assume this then? If the ordering on which the 
systematic sampling is based is approximately random, then systematic sampling 
will approximate random samples. However, what if sampling is systematic with 
non-random ordering-the case of "implicit ~tratification".~ Since the randomness 

' ~ i s h  (1965) is the classic on this subject. It gives what is still probably the most comprehensive 
treatment, though not the simplest. Som (1973) provides what we found to be the clearest presentation 
of results. Hansen, Hurwitz and Madow (1953) provide proofs. Levy and Lemeshow (1991) provide 
an introduction, as does Scheaffer, Mendenhall and Ott (1990). 

3 ~ h i s  is assuming that the respondents have the same characteristics as those questioned. In many 
contexts this will not be the case and non-response will introduce sample selection biases in estimates. 
There is no general solution to this problem. Note that to correct for non-response in this way, one 
needs to know whether existing expansion factors assume target or realized cluster sample sizes. 

4~mplicit stratification is called "implicit" to distinguish it from the "explicit" variety which is 
typically referred to (as in this paper) simply as stratification, and which is a completely non-random 
division of the population into different groups prior to any sampling (e.g. different provinces or 
income classes). 



enters only once (at the start) of a systematic draw, unless one has several sys- 
tematic draws (known as "replicated sub-sampling"), one does not have enough 
variation in the sample to estimate variances.' Since implicit stratification typically 
adds precision, for the same reason as explicit stratification, variances calculated 
under the assumption that the sample is random will tend to be upper bounds on 
the true variances and so will be con~ervative.~ However, we can do better than 
this. If we know the original ordering of clusters, we can treat the samples as if 
they had been derived using explicit stratification using the following method 
given by Kish (1965), and detailed below. 

Say that all the clusters in the hth explicit stratum have been listed from 1 
to Nh and nh have been selected systematically. Group pairs of clusters closest to 
each other into sub-strata (starting with the first two). Calculate V&r (th) as the 
sum of estimated variances for each sub-stratum, where the latter are calculated 
using the pairs of clusters and equation (8). VAr (th), thus calculated, would be 
an unbiased estimator of the hth stratum variance if that hth stratum had been 
divided into nh/2 sub-strata-each containing, among others, two neighbouring 
sampled clusters-and two clusters had been selected at random and with replace- 
ment from each of these sub-strata. Moreover, V&r (th) will also be only slightly 
biased upwards as an estimator of Var (th) given actual sample design. There is 
no overestimation at all if the ordering of clusters within each sub-stratum is 
random. Since clusters which are close to each other in a list used for implicit 
stratification are unlikely to differ much, this assumption is unlikely to be seriously 
violated and so the overestimation will be small. 

What we are interested in measuring in this section are sample design eflects. 
These give the ratio of the standard error one obtains given a particular set of 
assumptions about sample design to the standard error one obtains assuming that 
the sample is a simple random one. This ratio thus indicates the magnitude of the 
error made when ignoring sample design. The design effect also indicates the 
efficiency gain or loss from moving away from simple random sampling.' 

 here are some samples which are based on replicated sub-samples. However, most surveys 
either are not designed in this way or, if they are, do not record which cluster is part of which replicate. 
Replicates can also be created by randomly sub-sampling from the sample once it has been collected. 
However, this must be done based on the design of the original sample. Taking random sub-samples 
which ignore any clustering or stratification present and basing variances on the variation in the mean 
estimates from these different sub-samples will lead to biased variance estimates. The method of 
"balanced repeated replications" (Kish and Frankel, 1970) is one type of sub-sampling which does 
take into account sample design. However, in this case one might just as well, wherever possible, use 
the same assumptions used to replicate (post survey) for calculating the variances analytically. It is 
only when this is not possible (say when one has statistics more complex than unconditional means) 
that ost survey sub-sampling is appropriate. 

&qualifier "tend" is required since one can think of cases in which implicit stratification will 
reduce precision. This will be the case if the elements display periodicity: so that every sth element 
will be similar or if the ordering displays very strong trends (Kish, 1965, pp. 120-21). Neither case 
will be relevant in the household survey context. 

7~ precise comparison requires sample data for the same population under the alternative sample 
design. The lack of multiple different surveys may bias the comparison. For example, the standard 
estimator for the element variance is biased downward in a clustered sample. However, one can show 
that such biases are negligible for the cases considered here (Kish, 1965; Deaton, 1997). 



As noted in the introduction, ignoring stratification will lead to an overesti- 
mate of standard errors. On the other hand, ignoring clustering will lead to an 
underestimate of Var (K) if, as is typically the case, there is homogeneity within 
the cluster with respect to the variable of interest. For a given sample size, the 
variance of estimators is smaller the greater the homogeneity between clusters 
within strata and the greater the heterogeneity within clusters. The introduction 
of clustering increases within-stratum homogeneity, since clusters within a given 
sample differ by less than households do. This means that stratification becomes 
a more potent tool for increasing estimator precision once one has clustering 
(Kish, 1965, p. 164). 

While the biases from ignoring stratification and clustering run in different 
directions, researchers have found that ignoring sample design typically results in 
standard error estimates which are too small (see, for example, Kish and Frankel, 
1970, p. 1075). We turn now to two examples to get an idea of the magnitude of 
this bias with respect to poverty estimates. 

The two surveys from Pakistan and Ghana are used because of the contrast 
they offer. Both are Living Standards Measurement Surveys (LSMSs), sponsored 
by the World Bank. Both are clustered, but the two surveys take different 
approaches to stratification. The Pakistani sample is designed in a traditional, 
highly-stratified way (described in Howes and Zaidi, 1994). Its 4,745 observations 
are collected from 300 clusters in 104 strata (see Table 1). The Pakistani sample 
is also non-self-weighting. Its cluster-level weights reflect the usage of ppes as 
well as disproportionate stratification, with, in particular, urban households over- 
represented. 

The Ghanaian sample is made up of 3,181 households from 170 clusters. It 
is self-weighting on account of the use of varying cluster-takes based on the 
ratio of actual to estimated size (see Scott and Amenuvegbe, 1989, for a detailed 
description). It is not explicitly stratified at all. However, implicit stratification 
(i.e. systematic sampling with non-random ordering) was used: clusters were 
selected on the basis of a geographical ordering. We approximate the impact of 
this using the method recommended in Section 3. On this basis, the 170 clusters 
were ordered in the way they were in the sampling frame and divided into 85 
strata, starting with the first two clusters in the first stratum. 

In Table 2 we present standard errors for the means of household size and 
aggregate expenditure and the three most used poverty measures : the head-count, 
poverty gap and FGT2 indices. Both the poverty indices and the expenditure 
means are per capita. Since the exercise is purely illustrative we do not worry 
about equivalence scales or regional deflators, and arbitratory poverty lines are 

TABLE 1 
SAMPLE DESIGN FOR PAKISTAN AND GHANA LSMSS 

Explicit Number of Cluster Average cluster 
strata? clusters weights? Sample size sample size 

Pakistan 104 300 Yes 4,745 15.82 
Ghana No 170 N o  3,181 18.71 



TABLE 2 

FGT (a = 2) 
Mean Household Size Mean Expenditure Head-count Poverty-gap * 10 Index * 10 

Pak. Ghana Pak. Ghana Pak. Ghana Pak. Ghana Pak. Ghana 

Estimate 7.17 4.52 5,934 71,276 0.336 0.333 0.920 0.980 0.364 0.403 

Standard errors A. Clustering and 
stratification 0.072 0.081 125 1,935 0.012 0.016 0.046 0.072 0.024 0.039 

B. Clustering w/o 
stratification 0.087 0.098 158 2,323 0.017 0.020 0.063 0.083 0.032 0.043 

C. Stratification 
w/o clustering 0.059 0.053 86 918 0.009 0.010 0.033 0.042 0.018 0.024 

D. Simple random 
sample 0.061 0.055 91 1,002 0.009 0.011 0.035 0.044 0.019 0.025 

Ratio of A/D 
standard errors B/D 

C/D 
A/B 

Notes: See the text for explanation of the different standard errors. 



set at 3,780 rupees per capita per month for Pakistan and 37,900 cedis per capita 
per annum for Ghana. Both lines put approximately 1/3 of the sample in poverty. 

For each measure, four standard errors are given. Each is an estimate of the 
standard error assuming that the sample design is the one indicated on the left. 
The first ("stratification and clustering") is correct under the assumptions outlined 
at the start of Section 3 and the degree of stratification and clustering found in 
each survey (with the necessary approximations made where necessary to fit the 
surveys to this model). The second ("clustering without stratification") uses the 
same set of assumptions but ignores stratification. The third ("stratification 
without clustering") makes the same set of assumptions but ignores clustering 
and instead assumes a random sampling of households (with replacement) within 
each stratum. The fourth ("simple random sample") assumes that the surveys are 
simple random samples (with replacement). In all four cases, it is assumed that 
the survey is analyzed using the same set of weights, so actual poverty estimates 
are unchanged. 

We begin with Pakistan. For mean household size, the design effect is not 
that large. Standard errors increase by only 18 percent over a random sample (A/ 
D). This is what one would expect as there will typically be a great deal of 
variation within any one cluster with respect to household size. However, for 
mean expenditure and the poverty measures, the design effect is much larger. For 
the mean, it is 37 percent; for the head-count, 33 percent; for the poverty gap, 
31 percent; and for the FGT2 index, 26 percent. On average, standard errors 
increase by around a third. Ignoring the sample design of the Pakistan survey leads 
to calculated standard errors which are substantially smaller than the correctly 
estimated standard errors. 

It is clear from the table that stratification is very important. With clustered 
but unstratified data, standard errors would be between 68 percent and 89 percent 
(depending on the measure) greater than under srs (B/D). Note, however, that 
stratification is only important when the sample is clustered. Take mean expendit- 
ure as an example. Without clustering, stratification reduces the standard error on 
mean expenditure by only 5 percent from 91 to 86 rupees (C/D). With clustering, 
stratification reduces standard errors by four times as much, that is, by 21 percent 
from 158 to 125 rupees (A/B). Taking into account clustering but not stratification 
can be as misleading as taking neither into account. For the mean, the former 
strategy's estimate of 158 overestimates the correctly calculated standard error of 
125 by as much as the latter strategy's estimate of 91 underestimates it.' 

The results from Ghana are qualitatively very similar, and quantitatively 
larger. Sample design increases the estimated standard error of household size by 
47 percent (A/D). For the other indicators, increases range from a low of 45 
percent for the head-count to 55-65 percent for the poverty gap and FGT2 index 
to 93 percent for mean expenditure. Again the importance of taking stratification 
(here implicit) into account is evident. With clustering, stratification reduces esti- 
mated standard errors by 9 to 20 percent (A/B). 

'of course, one might prefer the former on the grounds that it is better to err on the side of 
caution. 



The interest in constructing poverty measures is to make comparisons over 
time or space and it is here that the inaccuracies in standard error computation 
are of particular importance. Take the case of Pakistan. Say we had another 
survey of identical size and design a few years later. Assuming that the new survey 
would give approximately the same standard errors, how much of a change in 
poverty would the new survey have to register for that change to be judged 
significant (at a level of 0.05), that is, not due to sampling variation? For the 
head-count, for a simple random sample, the, say, decrease would have to be 
from 33.6 percent to 31.1 percent, a decline of 7.4 percent. With clusters and 
strata, a 10.1 percent decline would be required. One can imagine many cases in 
which two survey points would register a change in poverty of 7-10 percent: at 
least in Pakistan, these are the cases in which taking account of sampling design 
is imperative.9 

Household surveys are far from being simple random samples. Typically, 
they are clustered and highly stratified, to name only the two most important 
departures from the srs model. Although recently published papers on statistical 
poverty analysis have ignored these departures, they are of considerable import- 
ance. The examples of the previous section show that taking into account sample 
design can increase standard errors by around one-half. 

The main recommendation of this paper is therefore that standard errors for 
poverty measures should be calculated taking proper account of sample design. 
Both stratification (explicit or implicit) and clustering should be factored in. Tak- 
ing account of only one, and not the other, can lead to inaccuracies as great as 
taking account of neither. Often the complexity of sample design will necessitate 
approximations, but these are much less egregious than just assuming simple 
random sampling. 

The results also highlight the importance of making available information 
about sample design with the sample information itself. For example, households 
should have stratum and cluster identifiers. Expansion factors should be made 
available and their derivation documented. If implicit stratification is used to pick 
clusters, the relationship of the cluster numbering to the original ordering of 
clusters should be given. For many surveys, precisely because attention has not 
been paid to sample design by end-users, these basic requirements are not fulfilled. 
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