
ADAPTATION OF DETAILED INPUT-OUTPUT INFORMATION: 

RESTRUCTURING AND AGGREGATION 

Danmarks Statistik 

This article deals with problems of construction of "square" input-output tables from detailed 
commodity and industry data and operationalization of the tables for use in econometric modeling. 
The adaptation procedure suggested is quite new and involves perfect and imperfect aggregation, 
and suppression of insignificant cells of the tables. 

Using slight modifications of well-known input-output methods (to make definitions conform 
to general concepts of network flow theory) it is shown that the construction and aggregation of 
tables, as well as the suppression of minor cells, can be viewed as still higher levels of the very same 
process: the search for a manageable model with roughly the same abstract properties as the original 
detailed, but overwhelmingly large, model. 

Simultaneously a consistent input-output terminology is suggested with fewer symbols and more 
rules than usual. 

The adaptation procedure has been applied successfully to the 1982 version of ADAM, the 
macroeconometric model operated by Danmarks Statistik (the Danish Central Bureau of Statistics). 

This article summarizes the theoretical and practical experience of two years 
effort to incorporate a complete input-output model into the econometric model 
ADAM. The "Annual Danish Aggregate Model" is operated by Danmarks 
Statistik, and it is extensively used by Danish government agencies for forecasting 
and planning purposes.' 

The starting point of our analysis is a detailed breakdown of the national 
production account, showing sources and uses of a large number of commodities 
and primary factors of production. Danmarks Statistik provides a yearly time 
series of such accounts from 1966  onward^.^ However, even major computers of 
today cannot contain such an amount of data simultaneously, and thus we need 
methods of extracting summary information from the accounts, with a minimum 
loss of information. 

The purpose of this article is to show how this method of extraction, in a 
simple and well-defined way, covers various well-known problems related to 
input-output analysis. In turn,, these problems include theoretical questions of 
constructing "square" input-output tables from commodity accounts and perfect 
aggregation of industries, as well as practical questions of imperfect aggregation 
and suppression of small cells of the tables. The suppression of small cells is an 

'This institutional set-up is perhaps a little unusual. One of the advantages of it has proved to 
be that the ADAM group developed close relations to the national accountants of Danmarks Statistik. 
The combined view on construction, restructuring and aggregation of input-output tables presented 
here may be regarded as a product of this set-up. 

'see Thage (1982) for a description in English of the Danish system of national accounts. The 
structure of the Danish system is quite similar to that of the Canadian system described in this journal 
by La1 (1982). 



unorthodox simplification of input-output tables, which in the ADAM case turned 
out to be very competitive to further aggregation. 

The data base on which the input-output tables are to be constructed is 
assumed to be commodity accounts ("balances") and information on the uses 
of primary factors of production. Commodity accounts are usually worked out 
for a large number of commodities. The debit side of a commodity account shows 
the total supply of the given "commodity" and its distribution according to the 
sources of supply (i.e. industries and imports, possibly by supplying country). 
The credit side of a commodity account shows the corresponding total use of 
the commodity and its distribution by user categories (i.e. industries and com- 
ponents of final demand). Of course, total supply must equal total use. 

The commodity accounts and the primary factor input information are 
usually collected in a matrix diagram as in Table 1. 

TABLE 1. 

Commodities Industries Final Demand Sum 

Commodities 
Industries 
Imports 
Primary Factors 

U F q + m  
D g 
m' i'm 

Y Yf Y 

The dimensions of the Danish system are: approximately 2,500 commodities, 117 
industries, 74 components of final demand, 1 import account and 6 types of 
primary factors. 

The reader should be familiar with the diagram and the symbols used. The 
diagram bears a close relationship to the accounting framework proposed by the 
United Nations, and it is essentially identical to the table given by, e.g., La1 (1982).~ 
Table 1 is taken as the starting point of our construction of input-output tables. 

Sum 

The matrix diagram of Table 1 offers a complete and detailed record of 
information concerning production and consumption of commodities. However, 
the amount of information contained in it is so large that it would be of little 
practical value without some kind of reduction by abstraction from details. Thus, 
we introduce simplifying assumptions for the purpose of reducing the vast body 
of data. 

( q  + m)' g ' f' 

3Cf. United Nations (1968). See, e.g., Mr Lal's paper for a brief, but full, explanation of the 
diagram. 



Before doing so, we shall have to modify the matrix diagram in trivial ways. 
Firstly, we split the import account into a large number of accounts, namely one 
import account for each commodity. In addition we introduce one new account 
for each commodity, transmitting domestic production from industries to total 
commodity supply. This leaves three accounts for each commodity: Imports, 
domestic production and total supply. Secondly, we apply the practice, usual in 
the treatment of transactions tables, that the accounts are numbered in the same 
way row-by-row and column-by;column. The result is the transactions matrix 
shown in Table 2. (The symbol on a (n x 1)-vector represents diagonalization 
of the vector in a (n x n) diagonal matrix. The symbol ' denotes transposition of 
a vector or matrix) 

TABLE 2. 

Primary Import Domestic Commodities Final 
Commodities Commodities Total Industries Demand Sum 

From ( 2 )  ( 3 )  ( 4 )  ( 5 )  ( 6 )  

At first glance these changes do not seem to be advantageous, since the new 
diagram is even larger than the original one. However, the augmentation is trivial, 
and soon we shall see how the matrix easily can be reduced. The matrix of Table 
2 is called the compounded system matrix or briefly the ~ y s t e m . ~  It is denoted 
by the letter T. The system matrix is seen to be block-triangular, since the columns 
corresponding to external inputs y and m are identically zero, as are the rows 
corresponding to external outputs f: Now, define the vector of external inputs as 

and the vector of external outputs as 

Due to the conservation law of each account, the column sums of T plus 
external inputs must equal the row sums of T plus external outputs: 

The vector t is called the throughput vector, since the jth element of t is the 
throughput or balance of account no. j. The vector t is 

4 ~ h e  system matrix is identical to the flow matrix concept of general network flow theory. The 
matrix defines an open flow network with sources ( y ,  m )  and sinks f: 



A common practice in an input-output context is to assume in general that 
all flows into any account of the system are proportional. The assumption requires 
specifically that the input mix of any account does not depend on the correspond- 
ing output mix. Formally, we assume that the coefficient matrix 

is independent of t. We shall consistently use the bar (-) to denote matrices and 
submatrices of coefficients (shares of system throughputs). Accordingly, D = 

D G ~ ' ,  m = h ( m 3 ) - ' ,  U = Q-'  etc.' 
The assumption of a constant input mix of any account can be given various 

interpretations. Concerning commodity accounts we assume that commodities 
are supplied with fixed market shares for imports ( m )  as well as domestic 
industries (D) .  Concerning industries, we assume that the input structure by 
commodities (0) and primary factors ( Y )  is constant, which amounts to the 
well-known "industry technology" assumption. Finally, we assume that the com- 
ponents of final demand are fixed-proportion commodity bundles (the proportions 
given by F and c). 

To solve the system equations, substitute the assumption (5) into the con- 
servation conditions (3). This yields 

= Tt + to,  
which may be solved to 

The matrix 

is called the fundamental inverse, since it contains all relationships between all 
accounts of the fundamental system. Of course, in practice we would try to reduce 
the system before inverting the very large matrix ( I  - 7). However, the funda- 
mental inverse has conceptual importance, and it is thus shown in Table 3 (proof 
~ m i t t e d ) . ~ , ~  

As long as the basic assumptions hold, the fundamental inverse defines the 
external inputs t i  as a unique linear mapping of the external outputs to. This 
linear relationship is briefly called the transfer properties of the system. But since 
the only system inputs are factors y and imports m, and the only system outputs 

'This is a minor departure from usual terminology, since the matrix 0 is denoted B in the main 
literature. However, the author believes that the proposed symbols are better mnemonics: T (Total 
system), Y (Yields), U (Uses), F (Final uses), D (Domestic market shares), t (throughputs), rn 
(imports), q (quantity produced) and g (gross production). The bar notation for coefficients leaves 
these symbols to be remembered only. 

6 ~ t  can be found by utilizing the fact that T is block-triangular, in addition to the relationship 
( I  - T)z = I. The process of inversion is laborious, but not difficult. 

'interpreting the table, the following formulae may be helpful: 

The formulae are easily shown, using the well-known expansion ( I  - X)-' = I + X + X Z +  
X3+ ... 



TABLE 3. 

From \ Primary Import Domestic 
Factors Commodities Commodities 

(1)  (2) (3) 

Commodities "..; 1 Total Industries Demand Final 
From (4) (5) (6) 

are the final demands f; the transfer properties are determined by the two upper 
right submatrices YD~( I  - f l ~ q ) - ' F +  & and f i ( I  - flDq)-'F alone. Together, 
these submatrices constitute the transfer matrix of the system. We denote the 
accounts of system inputs and outputs by the common term open accounts, since 
they are the "ports" through which the system interacts with the environment. 
The remaining accounts with throughputs q, q + m and g are denoted intermediate 
or closed accounts, since they represent internal system transactions only. 

This is the key to our reduction of the system. Any system matrix having 
the same transfer properties as the fundamental system is said to be equivalent 
to this system. There will be several kinds of equivalent systems, each having 
advantages and drawbacks, and this is indeed reflected in the l i te ra t~re .~  The 
author believes that the method outlined here is the only way to treat these 
equivalent systems in an organized manner. 

The simplest equivalent system that we can always achieve is the reduced 
system. That is, the system with no intermediate accounts. It is given by the two 
upper right transfer matrices (re-scaled to levels), and it is shown in Table 4. 
However, this system is not widely used. This must be due to two factors. Firstly, 
it is very vulnerable to modifications of the basic assumptions. For example, if 
the import share of steel would change, it would not be clear which cells to 
modify, since practically all cells of the matrices have some indirect content of 

'Cf. e.g. United Nations (1968) or (1973). 



TABLE 4 

THE REDUCED  SYSTEM^ 

Primary Import 
Factors Commodities Final Demand Sum 

Primary Factors 
Impoft Commodities 
Final Demand 

Sum 

steel. Secondly, same of the throughputs of intermediate accounts may have an 
interest of their own, e.g. the gross production of industries. Thus, some kind of 
compromise between the fundamental and the reduced systems has to be found. 
We shall examine some of the possibilities. 

Now, let us try the following procedure: We simply delete rows and columns 
of the fundamental inverse corresponding to intermediate accounts, except the 
accounts for domestic commodities, which we leave unaffected. This yields a new 
system inverse .Zd, still having the same two upper right submatrices and thereby 
the same transfer properties. Reversing equation (8) using the new Z d  yields the 
system coefficient matrix 

The resulting equivalent domestic commodity system is shown in Table 5.'' 

TABLE 5 

THE EQUIVALENT DOMESTIC COMMODITY SYSTEM 

Sum I O 0 4' f' 

Primary Factors 
Import Commodities 
Domestic Commodities 
Final Demand 

Alternatively, we might have deleted the intermediate rows and columns of 
the fundamental inverse, except those for total commodities. This would yield 
another inverse Zc,  from which the equivalent commodity system T c  could be 
found analogously. This system is given in Table 6. 

The commodity system has the same dimensions as the domestic commodity 
system. Both systems rely heavily on the assumption of constant D coefficients, 
but input structures and import shares may be modified. However, the commodity 

Primary Import Domestic Final 
Factors Commodities Commodities Demand Sum 

YD yf Y 
@D riiF m 
g UD w 4 

0 

'By the formulae of note 7, 

VDq(1- r B g ) - ' ~  = VD(I - q U D ) - l q ~  = Y(I - DqU)-'D@=. 

Thus, finding the reduced system does not require inversion of the huge matrix ( I  - U D ~ ) .  
'O~he easiest way to demonstrate equivalence is to solve the domestic commodity system from 

table 5 and use the formulae from note 9. 



TABLE 6 

THE EQUIVALENT COMMOD~TY SYSTEM 

Primary Import Commodities Final 
Factors Commodities Total Demand Sum 

Primary Factors 
Import Commodities 
Commodities Total 
Final Demand 
Sum 

system is preferable by virtue of the larger number of zeros. Still, it may be too 
large for practical purposes. 

To achieve a substantial reduction, we must return to the fundamental inverse 
and deiete both types of intermediate commodity accounts, maintaining the 
industry accounts. By the now usual procedure, we get the equivalent industry 
system T n  shown in Table 7. 

TABLE 7 

THE EQUIVALENT INDUSTRY SYSTEM 

Primary Import Final 
Factors Commodities Industries Demand Sum 

Primary Factors 
Import Commodities 
Industries 
Final Demand 

Sum I 0 0 g ' f 1  

Like the former reduced systems, the industry system relies heavily on the 
assumption of constant D coefficients, but in addition we may have difficulty in 
varying import shares, since domestic production and imports are no longer 
classified in the same way. This has led some input-output theorists to reclassify 
imports by "competing industry" using the coefficients. Other methods are 
available and possibly preferable, but they are outside the scope of this paper." 
Despite the difficulties involved in modeling import shares, the industry system 
has become the preferred compromise between applicability and detail in many 
countries. This choice is probably forced by the vast dimensions of both com- 
modity systems-or, alternatively, by problems concerning the aggregation they 
necessitate. 

Perhaps the future will call for mixed commodity-industry systems, in which 
selected commodities are open for variations in import shares, while less important 
commodities are treated on the less accurate industry basis. The method of 
construction of such systems should now be obvious.12 

"The method used in the Danish econometric model ADAM is summarized in Dam (1984). 
121n fact, such a mixed system has been integrated in the Danish input-output system, c.f. Thage 

(1982). 



All models considered so far are of the "industry technology7' type. Indeed, 
we demonstrated that the industry technology assumption fits naturally into the 
general input-output assumption of constant input coefficients of any system 
account. However, this fact implies nothing about the realism of such an 
assumption. 

The alternative "commodity technology" assumption is widely advocated as 
a more meaningful one.13 In terms of the fundamental system matrix T, this 
assertion implies that the determination of submatrices D, U and Y by the 
general assumption (5) is abandoned. Such an extension of analysis is perfectly 
possible, and the reader will find the proposed framework useful for this purpose. 

However, we do not elaborate the extension here. In the author's view, the 
choice of "technology assumption" is an interesting theoretical question, but the 
practical importance of it is easily exaggerated. The two"techno1ogy assumptions" 
differ, but only to the extent that a number of commodities are produced in more 
than one industry as "by-products". As industries are usually classified according 
to type of product, the "by-products" problem is likely to be of minor importance, 
quantitatively. 

To the author, the basic problem is rather a different one, namely that about 
2,500 commodity input structures are wanted, whereas only 117 independent 
input structures can be estimated from industry data (using Danish system 
dimensions). Thus, in the case of "commodity technology" assumptions, we are 
forced to aggregate commodities into 117 "characteristic commodities," while in 
the case of "industry technology" assumptions we need not aggregate com- 
modities, since we relate the 117 input structures available directly to industries. 
This means that the two "technology assumptions" are properly to be regarded 
as alternative aggregation procedures having roughly the same properties, but 
each having some drawbacks as to the other. 

However, none of the subsequent results depend critically on the "technology 
assumption." The reader may readily substitute the words "characteristic com- 
modity" and "commodity group" for "industry" and "branch of production" 
below (and, of course, modify definitions (10) through (13) appropriately). 

In the following, we take the industry system as the basis for our analysis. 
For brevity, we introduce the symbols 

The system can now be written as in Table 8. 
13 See e.g. U.N. (1973). 



TABLE 8 

THE INDUSTRY SYSTEM (REPEATED) 

Primary Import Final 
Factors Commodities Industries Demand Sum 

Primary Factors 
Import Commodities 
Industries 
Final Demand 

We still use the bar to denote coefficient matrices. The transfer properties 
of the industry system are now determined by the two matrices F ( I  - A)-'B + Ff 
and M(I -A)-',!?+ Mf. 

While the industry system of Table 8 will probably satisfy the input-output 
theorist, it might still be too large for the econometrician, since he needs time-series 
of economic data. Thus, he has to store, say, ten observations of the tables, and 
this may require further reductions in the table size. 

In this case, the first thing to do is to aggregate imports into components, 
e.g. commodity groups, factors into factor classes, and final demand into broad 
categories. Since the number of categories of final demand determines the degrees 
of freedom of the quantity model, and the number of system inputs determines 
the degrees of freedom of the dual price model, this aggregation of the open 
accounts is certainly critical. However, we shall not treat this problem here, since 
it is of a philosophical or professional, rather than a technical nature.14 Instead, 
we focus on the more technical question of aggregating industries into main 
branches of production-given the preferred choice of aggregation of system 
inputs and outputs. 

Sum 

We now ask the following question: is it possible to aggregate industries 
into main branches of production in such a way that the transfer properties of 
the main branch system are identical to the transfer properties of the industry 
system? A sufficient condition for such an equivalence obviously is, that the 
transfer matrix of the system is unchanged, i.e. that 

(14) Y ( ~ - A ) - l j j  = F*(I-A*)-'E* 1 

0 0 g ' f' 

and 

(15) 

where the asterisk (*) indicates, that the industry dimension(s) of the matrix are 
aggregated to a main branch level.15 

141n certain quite special cases, however, perfect aggregation of demands or isputs is possible, 
c.f. J. A. Olsen (1982). 

151f the system outputs f vary freely, the conditions (14) and (15) are also necessary. If the 
variation of the f elements is subject to linear restrictions, the conditions might be weakened. 



It is well-known from the theory of aggregation of input-output models16 
that conditions (14) and (15) hold if and only if any two industries to be aggregated 
into a main branch satisfy either 

(16) The two industries have identical input structure, i.e. identical columns in 
matrices A, Y and M, 

(17) The two industries produce proportionally, i.e. their relative shares of the 
main branch production are constant. 

While the first condition is well explored in the literature, the significance of the 
second has been quite overlooked. This has probably been due to the lack of a 
total system view of the problem. 

The key to the importance of condition (17) is the fact that gross productions 
of industries, according to the model itself, are determined as a linear map of 
final demands f ;  and since the number of industries is usually larger than the 
number of demand categories, this imposes linear restrictions on the variation 
of gross productions g,. However, this need not imply the desired proportionality, 
since linear restrictions in general may be more subtle. The author believes that 
the following special cases are the only two that guarantee proportionality: 
If, for a given main branch, either 

(18) only one of the industries in the main branch supplies outside that branch, 

(19) all industries in the main branch have an identical output structure, i.e. 
proportional rows in the matrix (A, I?), except for the intra-branch supplies, 

then all industries in the main branch produce proportionally.'7 
While the condition of an identical input structure relates to so-called 

horizontal aggregation, the condition (18) relates to vertical aggregation, and the 
output structure condition (19) may relate to both types. The simplest example 
of two industries fulfilling the vertical aggregation condition is the case of a 
"chain": If the whole output of some industry is used as input in a single other 
industry, the two industries produce proportionally, due to the assumption of 
constant technical coefficients. 

16See e.g. Theil (1957) or (1971). 
 r roof: We prove the case in which the main branch does not supply other industries, i.e. the 

only extra-branch supplies are final demands by branch industries, denoted e,, which is a subvector 
of e = E t  We partition the A-matrix into our branch b and the remaining industries r and rearranpe, 
SO 

The zero submatrix will remain in the inverse (I  -A)-". Thus, g, = ( I  - A,,)-'e,. If the e, elements 
are bound to move proportionally, the elements of g, must as well. The simplest case of this is that 
only one of the elements is non-zero. This proves (18). Another case, guaranteeing that the elements 
of e, move proportionally, is proportionality of all rows in E,. This proves (19). Obviously, the 
necessary proportionality of extra-branch supplies still holds if we substitute for the assumption 
A,, = 0 an assumption of proportional rows of A,,, but this proof is omitted. 



If, for a given aggregation, the assumptions of an identical input structure, 
identical output structure or the vertical aggregation condition hold inside 
branches, the aggregated main branch system is equivalent to the fundamental 
system. In empirical work, however, such assumptions are not likely to hold 
exactly, but rather to some degree. Thus, we abondon the requirement of strict 
equivalence to the fundamental system, focusing our attention on measuring the 
"deviation" of a proposed main branch system from the fundamental system. 
This means, in the words of Theil (1954), that we leave the field of perfect 
aggregation and enter into the field of imperfect aggregation. 

The reductions of the fundamental system discussed so far imply no real 
sacrifice of information, since the transfer properties of all the proposed systems 
are identical. Nevertheless, in practice we may wish to push reductions even 
further, necessitating such a sacrifice of information. This will be the case if we 
regard the benefit of the system reduction as greater than the cost of minor 
distortions of the fundamental transfer properties. This question is the traditional 
problem of finding the relevant level of abstraction in a given scientific context. 
The problem has no theoretical solution, but practice has shown that many 
empirical economists have been willing to accept substantial "aggregation error" 
to achieve the desired simplificati~n.'~ 

To provide the best basis for our choice of abstraction level, we need a 
measure of the aggregation "errors." An obvious choice of such a measure is the 
vectors of "aggregation bias" on the system inputs: 

These vectors of aggregation bias are null-vectors in the base year, but they should 
be calculated for relevant alternative values of the f vector, e.g. using historical 
ex post predictions.Ig 

In empirical works by the author concerning the aggregation level of the 
Danish econometric model ADAM, the aggregation biases (20) and (21) proved 
to be applicable measures of the quality of alternative aggregations of ind~stries.~'  
However, their strength lies in the testing phase of proposed aggregations, rather 
than in the constructive phase. In the latter phase, proposing reasonable aggrega- 
tion keys, more intuition has to be involved. In this context, the author found it 
very convenient to take the pattern of zeros in the industry system matrix as the 

''This acceptance must be viewed in the light of a number of empirical investigations showing 
that the "technical coefficients" are not particularly stable. Danish evidence is summarized in F. 
Lauritzen (1982). 

I91n this case, the aggregation biases (20) and (21) can be viewed as generalizations of Theil's 
measure of aggregation bias, c.f. Theil (1957) or (1971). Please note that Theil's concept of "first 
order bias" loses significance from our point of view. A detailed treatment of the aggregation bias 
measure, including proposed decompositions, is given in J. A. Olsen (1982). 

''A complete investigation of aggregation bias should also involve the dual "price bias," defined 
as some row vector of input prices left-multiplied on the bracketed coefficient matrix of (20) and (21). 



starting point. This pattern of zeros can be regarded as determining the qualitative 
structure of inter-industry supplies.21 

The first step constructing an aggregation key, then, is to re-arrange the 
industries in such a way that the inter-industry matrix A becomes block-triangular. 
This amounts to an organized way of examining the possibilities of vertical 
aggregation. The re-arranging procedure is well known from the theory of 
macroeconomic models as "causal ordering," and thus the necessary algorithm 
is a standard facility of packages of econometric software." 

The second step of the procedure is to examine to what degree the blocks 
of industries fulfill the conditions of perfect aggregation. If this degree is readily 
acceptable, we are through. If not, we should still prefer to aggregate inside 
blocks rather than across blocks, since in the first case we preserve the main 
characteristics of inter-industry structure, while in the second case we do not. 

We may extend the procedure by a third step, aggregating those of the blocks 
which supply the same component of final demand.23 This amounts to an effort 
to preserve the zeros of the original transfer matrix in the aggregated transfer 
matrix.24 

Aggregation keys, constructed in the proposed way, in the ADAM case 
turned out to be superior to other keys. The 117 industries of the fundamental 
system of the Danish national accounts were aggregated into the 19 main branches 
of the ADAM model, causing less than 1 percent aggregation bias and no loss 
of predictive power (using 5-year ex post predictions).25 

Aggregation of the tables is not the only way to reduce the body of data. 
An alternative way is to ignore the minor cells of the tables, thereby increasing 
the number of zeros. As the zeros need not be stored, this is a simplification as 
well as the reduction of table dimensions. 

In the case of the ADAM model, a procedure of resetting the small cells to 
zero turned out to be indeed competitive to further aggregation. The method is 
a natural extension of the above-mentioned structural aggregation procedure, 
which tends to concentrate inter-industry supplies in relatively few, but large 
cells of the main branch system. In the ADAM system matrix, e.g., 20 percent 
of the cells cover 90 percent of the amounts of commodity flow. Thus, in this 
case, a number of the small cells can be reset to zero, causing only inferior 
changes in the transfer properties. This conclusion is further supported by the 

 he pattern of zeros determines the directed graph ("digraph") of the system, see e.g. Harary 
et al. (1965). The brief introduction by Defourny and Thorbecke (1984) to social accounting matrix 
applications of graph theory is strongly recommended. 

22 To make the main inter-industry structure appear clearly, it may be necessary to ignore small 
cells of the tables. 

23This should not be done if the blocks supply several categories of final demand. 
2 4 ~ n  the language of graph theory, we wish to preserve the reachability properties of the original 

system digraph. 
'%.f. J. A. Olsen (1982). 



empirical findings that the small coefficients of the tables tend to be relatively 
unstable.26 

The suppression of small cells should be done without affecting throughputs 
of the system accounts. This means that a cell cannot be reset to zero without a 
number of derived resettings. If, for example, we wish to set the cell (i, j )  to zero, 
we have to increase some other cell in row no. i as well as in column no. j by 
the same amount as the reduction in cell (i, j ) ,  say cells ( i ,  I) and (k, j ) .  Finally 
we have to decrease cell (k, 1) correspondingly to preserve throughputs, as shown 
in Figure 1. 

reset . . . 

Figure 1. The principle of resetting 

The derived resettings are arbitrary, but they can be chosen with more or 
less flair. As in the case of aggregation, they are part of an abstraction process, 
requiring both caution and skill. However, two observations can be made. Firstly, 
the intra-industry (diagonal) element (i, i) is a harmless place to put derived 
resettings, if possible. Secondly, the derived resettings should be kept inside the 
submatrices A, E, M and Mf, leaving submarginals unaffected. 

The process of determining derived resettings is quite laborious, when done 
by hand. Methods for automatic resetting have not yet been fully developed, and 
perhaps such methods are not even desirable, since they replace consciousness 
by  electronic^.^^ Anyway, once the resetting procedure has been implemented, it 
can be repeated automatically in updatings, provided that the inter-industry 
structure does not change dramatically. 

The resetting procedure was a major success in the ADAM case, since the 
original number of 550 positive cells of the system matrix was reduced to a third, 
causing negligible changes in transfer properties. These changes can be measured 
analogously to (20) and (21), replacing the aggregated matrices by reset matrices. 

The implementation of integrated systems of national accounts and input- 
output tables based on detailed commodity flows, as recommended by the S.N.A., 
dramatically increases the amount of data available for econometric analysis. 
This increase creates, in turn, a growing demand for principles of abstraction, 

2 6 ~ o r  Danish evidence, see F. Lauritzen (1982). 
 he well-known RAS method will probably apply, since it preserves zeros as well as marginals, 

see e.g. United Nations (1973). 



i.e. rules telling us how to extract the main informational content of the data, 
relevant for various special applications. 

In the case of the Danish econometric model ADAM, such an extractive 
procedure was developed successfully. This is clearly demonstrated in Table 9, 

TABLE 9 

PREDICTIONS OF ADAM SYSTEM INPUTS 
MILLIONS OF DKR, 1980 PRICES 

Prediction Errors 
Observed Bias Bias 

1975 ADAM Detailed ( 2 ) - ( 3  pct. 
(1) (2) (3) (4) (5) 

Imports, by SITC 
0 food 7,160 315 3 09 6 0.1 
1 beverages 1,084 133 105 28 2.6 
2 + 4 crude materials 5,673 -1,604 - 1,748 144 2.5 
32 coal 1,310 -147 -179 32 2.4 
333 crude oil 10,504 -3,521 -3,502 -19 -0.2 
3, nei oil products 15,499 -477 -441 -36 -0.2 
5 chemicals 7,863 -130 -197 67 0.9 
67-69 metals 7,835 -1,100 - 1,059 -41 -0.5 
6, nei misc. products 9.974 -820 -756 -64 -0.6 
78 motor vehicles 3,805 -108 34 -142 -3.7 
79 ships, aircraft 4,273 3,187 3,187 0 0.0 
7, nei machinery 15,484 193 204 -11 -0.1 
8+9  misc. goods 8,232 104 -39 143 1.7 

services 6,604 1,386 1,445 -59 -0.9 

Duties 57,904 -444 -358 -86 -0.1 

Factor income 282,540 3,034 2,996 38 0.0 

Prediction Errors 
Observed Bias Bias, 

1980 ADAM Detailed (2)-(3) pct. 
(1) (2) (3) (4) (5) 

Imports, by SITC 
0 food 
1 beverages 
2 + 4  crude materials 
32 coal 
333 crude oil 
3, nei oil products 
5 chemicals 
67-69 metals 
6, nei misc. products 
78 motor vehicles 
79 ships, aircraft 
7, nei machinery 
8 +9  misc. goods 

services 

Duties 

Factor income 

Prediction errors are observed minus predicted values, using 5 year old coefficient matrices (i.e. 1975 
inputs were predicted using 1970 coefficients and 1980 using 1975 coefficients). Please note that 
prediction errors and biases must sum to zero. 
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showing ex post predictions of the ADAM system inputs. The ADAM inputs 
were predicted from 27 categories of final demand, using matrices of 117 industries 
and 19 ADAM main branches, alternatively. In both cases, prediction errors are 
quite large, as we should expect from a simple assumption of constant coefficients. 
However, there is little doubt that the aggregated and reset ADAM matrices 
reflect the structural changes in the economy in a satisfactory way, for 
macroeconomic purposes. 
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