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The paper is concerned with a method of organizing and analyzing information relating to 
human stocks and flows. The kind of statistical reporting system envisaged is of a traditional 
kind, but extended so as to record year-to-year changes of state. Life is divided into a number of 
sequences, each with its own set of characteristic classifications, to avoid an excessive prolifera- 
tion of categories and so enable many analyses to be made with the kind of statistics already 
available in a number of countries. The need, for some analytical purposes, to combine classi- 
fications from different sequences is fully recognized; and this need indicates a direction in 
which statistical reporting systems should move in the future. 

The main analytical tool is a set of linear difference equations which, under suitable condi- 
tions, can be interpreted either in terms of an input-output system, as in economics, or in 
terms of an absorbing Markov chain, as in probability theory. A simple regression model is 
used to link characteristic classifications. 

About half the paper is taken up with numerical examples, mainly connected with the 
British educational system as it was in the mid-1960's. An application is also given to movements 
into, through and out of a psychiatric service system in Scotland. 

Since writing the paper which I contributed four years ago to the meeting of 
the International Association for Research in Income and Wealth at Maynooth 
[I l l ,  I have continued to work in the area of social demography. Part of what 
I have written in this period has been connected with the endeavour promoted 
by the Statistical Office of the United Nations to formulate an integrated system 
of demographic, manpower and social statistics. In early discussions on the sub- 
ject it was thought that, whatever else such a system should include, it must 
contain three ingredients. The first of these is a detailed treatment of human 
stocks and flows in different areas of social interest, such as education, employ- 
ment, health, delinquency and so on. The second is a means of accounting for 
the services provided, often by the state, in these areas, the costs incurred and 
the resources engaged in them. And the third is a means of recording the dis- 
tribution of these services over various classes of beneficiary. A fairly lengthy 
discussion paper in which an attempt was made to elaborate and illustrate these 
ideas is available in [12]. 

In this paper I shall concentrate on the socio-demographic aspect of this 
system, on the development of what may be called life sequences; but I shall 
also indicate how this information can be linked with economic information on 
costs and benefits. I shall give some numerical examples drawn from different 
fields and try to answer a number of general questions to which the approach 
gives rise. 

In his progression from birth to death an individual passes through a suc- 
cession of states. Each year he becomes a year older; at some time between the 



ages of two and five he is almost certain to start going to school; at any time his 
parents may move to another part of the country; at any time he may fall ill and 
require to be treated by a doctor or to spend time in a hospital; at any time his 
aberrant behaviour may turn to delinquency and, beyond a certain age, this will 
be recognized by the criminal courts and, if detected, bring him in contact with the 
penal system. 

Apart from these characteristics, of which some, like age, must change with 
time in a perfectly regular way, some, like health and educational attainment, 
are bound to change with time but not in such a regular way, and some, like 
social behaviour, may or may not change with time, there are other character- 
istics either of the individual or of his family which can hardly change. The 
individual is male or female, black or white, clever or stupid, tidy or untidy, 
handsome or ugly, to mention but a few personal characteristics. His family is 
patrician or plebeian, rich or poor, religious or ilreligious, strict or easy going, 
settled or migrant, to mention but a few family characteristics. 

Obviously an individual can be described by a very large number of char- 
acteristics. Any attempt to classify individuals by many characteristics simul- 
taneously leads, as the number increases, to more and more compound categories, 
that is states, and calls for large quantities of data. While it must be recognized 
that some analytical purpose may require a classification by almost any combina- 
tion of characteristics, a regular statistical reporting system must almost inevit- 
ably provide information on a less ambitious scale. For any aspect of life, 
information can be confined to what is thought to be necessary to describe that 
aspect, and the merging of information relating to different aspects can be treated 
as a separate problem. This application of the principle of divide and conquer 
leads naturally to the concept of life sequences. 

A life sequence traces the changes of state from birth to death in some 
particular compartment of life. For purposes of statistical reporting this requires 
that we define the compartment in question and that we draw up a list of the 
classifications to be considered characteristic of it. 

In defining the compartment of life to which a sequence relates it is con- 
venient to make use of the concept of a boundary as exemplified by the economic 
concept of the production boundary. Applying this idea to education, for 
instance, we might decide to draw the boundary round full-time formal education, 
say, and ignore all types of part-time and informal education; or we might 
decide to extend the boundary so as to include some but not all of these peripheral 
types of education. The need for this choice and the way it is made finds a close 
parallel in the definition of production. In the present instance we could defend 
the tight definition of the educational boundary by reference to the useful results 
that can be obtained from a study of full-time formal education and to the diffi- 
culties of collecting information about part-time and informal education. 

In formulating the characteristic classifications of a sequence, the main 
endeavour should be to provide an adequate description of what takes place in 
it. For many purposes, age and sex should be considered characteristic classifi- 



cations in all sequences, although this is not essential. In the case of learning 
activities, additional classifications which would obviously be desirable are: type 
of educational institution attended, grade or level of work, subjects studied and 
leaving qualifications. 

Every sequence relates to the whole population of a country or region, 
whether the data are provided by complete enumeration or by sampling. Typi- 
cally, therefore, there will always be one or more "inactive" categories. For 
instance in the learning sequence, it would be necessary to record those who were 
educationally inactive and to divide those who had not yet entered the educa- 
tional system from those who had left it. 

Let us now turn to some examples of life sequences. 

(a) The active sequence. This sequence relates to learning activities, earning 
activities and the educationally and economically inactive. Its various parts are 
discussed at some length in [9]. A possible boundary and set of classifications 
for learning activities have been given above; for earning activities, the boundary 
would be drawn by reference to the concept of production in the SNA and ob- 
vious characteristic classifications are occupation, industrial status and industry 
of employment. The remainder of the population comes into the category 
"inactive". 

(b) The passive sequence. This sequence relates to the succession of family 
groupings to which individuals are attached in the course of their life. The great 
majority of individuals are attached to natural households of different kinds but 
a sizeable minority are attached at some period of their life to one or other of the 
many forms of institutional household. Characteristic classifications for natural 
households are, for example; size, composition, social class, income, race, 
religion, housing conditions, neighbourhood and location. 

(c) The sequence of health and medical care. This sequence relates to health 
conditions, their treatment and their consequences. Such information may be 
useful in two different contexts: (i) in planning and organizing health services; 
and (ii) in studying the aetiology and treatment of diseases. In the first case, the 
boundary will be drawn with reference to the organizational complex in question 
which may stretch from a national health service to a group of hospitals, clinics, 
and practitioners engaged in providing a particular kind of health service in a 
particular locality. In the second case, the boundary will be drawn with reference 
to a disease or group of diseases. Classifications characteristic of this sequence 
are conditions of health, diseases, treatments, incapacity and medical practi- 
tioners and establishments. 

(d) The sequence of delinquency. This sequence relates to aberrant behaviour 
leading to deIinquency, to delinquency itself and to its treatment and conse- 
quences. As in the case of health and medical care, we can interest ourselves in 
the organizational problems of dealing with delinquency in general or in the 
aetiology and treatment of particular groups of crimes; and the boundary must 
be drawn by reference to these interests. Classifications characteristic of this 
sequence are early warning behaviour, offences, gravity of offences, treatment of 
offenders, incapacity and institutions (police, courts, prisons, etc.) which deal 
with offences and offenders. 
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Eventually we shall consider the problem of connecting classifications from 
different sequences. But before we do this let us look at the questions of pre- 
senting and analyzing data relating to a single sequence. For many purposes this 
will be sufficient; for instance, in planning educational or health services we are 
probably more interested in the number of individuals likely to move through 
different parts of the system in the future than with, say, the personal or familial 
characteristics of these individuals. These characteristics are mainly relevant for 
another purpose, namely in understanding why some kinds of individual tend to 
be concentrated in certain parts of the system. Of course, this knowledge may 
help us to make better projections but it is not necessarily essential for that pur- 
pose. 

IV. A FRAMEWORK FOR HUMAN STOCKS AND FLOWS 

In studying any sequence we need to know how individuals are distributed 
over states at different points in time (stock information) and how individuals 
move between states over intervals of time (flow information). Contrary to the 
position in economics, the world of social statistics contains a great deal of stock 
information and comparatively little flow information. While stock information 
has many uses it does not enable us to see in any detail how changes take place. 
For this reason it seems to me that the improvement of flow infolmation is the 
most important task, at present, in this corner of the statistical universe. While I 
think it useful, by formulating models, to show how statistical information can 
be used, I also think that a coherent measurement of stocks and flows is elemen- 
tary, and desirable independently of any particular system of models, such as the 
one described in the next section. 

A standard matrix framework which can accommodate the data for any 
sequence is set out in table 1 below. This framework is a little different from the 
one I used in my earlier paper [I I]  since it relates to the opening and closing 
stocks of one period rather than to the outflow from two successive periods. 
This distinction is spelled out in [9, 121. 

This framework can accommodate information from any sequence or 
indeed, from any combination of sequences; everything depends on the classi- 
fications used. The information itself can relate to those alive in a given interval 
of time (cross-section or transversal data) or to those born in a given interval of 
time (vintage or longitudinal data). 

There are several advantages in having a framework of general applica- 
bility. In the first place, it enables us to specify sets of data which are coherent 
and, as far as they go, complete. In the second place, this feature is of particular 
importance if, as frequently happens, the data for a single sequence are collected 
by separate agencies. For instance, it enables us to see precisely what demo- 
graphic, educational, employment and other statistics must be available to 
construct a coherent matrix for the active sequence. In the third place, the even- 
tual crossing of classifications from different sequences is likely to be made easier 
if any common parts of different sequences are compatible. In the fourth place, 
a framework is useful in building models because it shows the identities by which 
the variables in the model are connected and so the degrees of freedom available 
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TABLE 1 

I Outside world [ cr ( d' (1 

THE STANDARD MATRIX 

State at \ New Year 

I I ! !I 

The symbols in this table have the following meaning: 
a, a scalar (or single number), denotes the total number of indi- 

viduals who both enter and leave "our country" in the course 
of the period and so are not recorded in either the opening or the 
closing stock. An example is a baby born during the period who 
dies before the end of the period. 

b, a column vector (or column of numbers), denotes the new 
entrants into "our country", namely the births and immigra- 
tions of the period, who survive to the end of the period. 
Individuals in this category are recorded in the closing stock but 
not in the opening stock. 

d', a row vector (or row of numbers), denotes the leavers from 
"our country", namely the deaths and emigrations of the 
period. Individuals in this category appear in the opening 
stock but not in the closing stock. In accordance with con- 
vention, a row vector is represented by the symbol for a 
column vector followed by a prime superscript ('). 

S,  a square matrix (or square block of numbers), denotes the sur- 
vivors in "our country" through the period, who are recorded 
in both the opening and the closing stock. They are classified 
by their opening states in the columns and by their closing 
states in the rows. 

n', a row vector, denotes the opening stock in each state. 
An, a column vector, denotes the closing stock in each state. The 

symbol A denotes the lag operator which shifts in time the 
variable to which it is applied. Thus, if n(7) denotes the value 
of the vector n at time 7, then An(7) -- n(7 4- I) and, in general 
A+2(7) = n(5 -I- 0). 

- - 

Our country: 
closing states 

Opening stocks 

to be absorbed by behavioural relationships, policy constraints and the like. 
Finally, even if our statistics came from a continuously updated system of 
individualized data, it would still be necessary to have clear ideas about the 
information to be extracted from the data bank for any particular analysis and 
the identities connecting these data. Of course, in these circumstances, the 
arrangement of data on worksheets or printed pages ceases to be of interest; 
they are all in the computer. But the processes of thought needed to use them 
effectively are much the same as when simpler methods of processing are used. 

The symbols in Table 1 above are connected by two sets of identities. 
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First, those in the opening stock either survive to the end of the year or die or 
emigrate in the year, that is 

(1) n = S1i+d 

where i denotes the unit vector, so that S'i denotes the column sums of S. Second, 
those in the closing stock either have survived from the beginning of the year or 
are born or immigrate during the year, that is 

( 2 )  An = Si+b. 

(a) Backward models and forward models. Either of these equations can be 
turned into a set of different equations with an exogenous vector by forming 
coefficient matrices based respectively on the rows or columns of S. If the row 
coefficient matrix is denoted by G', then 

(3) G' = S'Afi-1 

and so, by combining (1) and (3), 

(4) n = G'An+d. 

Similarly, if the column coefficient matrix is denoted by C, then 

(5) c = sfi-1 

and so, by combining (2) and (9 ,  

(6 )  An = Cn+b 

(b) The forward model in conditions of stationary equilibrium. Equation ( 6 )  
is based on transition proportions: those in a given state at the beginning of a 
year go in fixed proportions to the states that it directly feeds. This equation 
enables us to project forward. In what follows I shall concentrate mainly on this 
form of equation; mutatis mutandi~ parallel statements can always be made for 
the backward equation. 

Let us consider first the case in which our data relate to a population in 
stationary equilibrium or can in some way be adjusted to satisfy this condition. 
In these circumstances the size and composition of the population remains un- 
changed and so Aen = n and ABb = b. In this case (6) takes the form. 

which expresses n as a matrix transform of b. 
To an economist, (7) is formally identical to the quantity equation of an 

open input-output system, with (I- C)-I as the matrix multiplier that trans- 
forms final demands into total outputs. In the present case, the matrix transforms 
new entrants into total population. The significance of this interpretation is that, 
as in the economic case, there is a corresponding price equation which enables 
us to work out future costs or revenues associated with those now in any given 
state from a knowledge of the unit cost or revenue in each state. 

To a probability theorist, the matrix inverse (I- C)-l, has the form of the 
fundamental matrix of an absorbing Markov chain; and it can be given this 
interpretation if C can be regarded as a probability matrix and not merely as a 



matrix of proportions. This implies that the probability of movement from a given 
state to another state is the same for all members of the given state, which in 
turn implies that the probabilities of movements Bom the given state are inde- 
pendent of the path by which that state has been reached. The significance of 
this interpretation is that if C can be regarded as a probability matrix then the 
sequence can be regarded as an absorbing Marltov chain and the many theorems 
applicable to such chains can be applied to it. 

(c) Remembering the past. If states are defined in terms of the current charac- 
teristics of individuals only, it may not be plausible to assume that the proba- 
bilities of movements from states are independent of the paths along which those 
states have been reached. For instance, in the sequence of health and medical 
care, we may find two individuals in apparently the same conditions of health 
at a given age but we might expect their medical futures to be different if their 
medical pasts had been different. In such a case it would seem necessary so to 
define states that they relate not only to the medical situation of the moment 
but also to the past medical situations of the individuals. This can be done as 
follows. 

Suppose that the life span is divided into T age groups or stages, and that at 
each stage individuals are classified to p medical categories. In the simplest case 
the medical categories might consist of the dichotomy well or ill. There would in 
this case be two states at the first stage. At the second stage, those who were well 
at the first stage would be classified according as they were well or ill and those 
who were ill at the first stage would be similarly classified. Thus, at the second 
stage there would be p2 states and, in general, at stage T there would be p-tates. 

If we think in terms of a period of one year between the opening and closing 
stocks and of a stage length of ten years, then in any period an individual can: 
(i) remain in the stage and, as far as this paper is concerned, also the state in 
which he was recorded at the beginning of the period; (ii) move to one of the 
states characteristic of the next stage; or (iii) move into the absorbing state. 

With this method of recording, the C-matrix takes a very speciaI form: 
the diagonal submatrices are diagonal (corresponding to the fact that changes of 
state within a stage are not recorded); and the only other non-zero submatrices 
are those immediately below the diagonal ones (corresponding to the fact that 
individuals can only go from one stage to the next and can neither skip a stage 
nor go backwards). Thus, in the case of three stages, C takes the form 

whence 

(9)  ( I - C ) - l  



Thus, while the C-matrices tend to be large, the inverse matrices can be built 
up by taking reciprocals and by systematic matrix multiplication. 

(d) The forward model as a basis for projections. If it can be assumed that 
the C-matrix remains fixed over time, then (6) can be used to make projections 
provided that we know the future course of the exogenous vector, b. Thus, if 
we apply the lag operator, A, to (6), we obtain 

A2n = CAn + Ab 

= C2n + Cb f Ab 

and, in general, 

Z - 1  

(1 1) AZn = CZn + 2 COAz-O- ll. 
0 = 0  

Equation (1 1) expresses the stock vector T periods hence in terms of the present 
stock vector and new entry vectors from the present period through period 
7- 1. 

(e) Changing coeficients. The elements of the C-matrix, like those of the 
A-matrix in economic input-output analysis, depend on supplies and demands 
which, in turn, depend largely on public policy and on the community's attitude 
to education, health or whatever it may be. It is likely, therefore, that the C- 
matrix will change over time, and the question arises: can we find a satisfactory 
method of projecting the elements of C so that, as we move forward, we can 
gradually change the transition probabilities to be applied to opening stock 
vectors? If we can then, as is shown in [9, 121, there is no difficulty in reformu- 
lating (I I) to incorporate this information. 

If we look at a series of C-matrices we find that apart from sudden changes, 
occasioned by such policy decisions as raising the school-leaving age, the transi- 
tion probabilities are either constant or changing slowly. For instance, the proba- 
bilities of remaining at school at ages following the school-leaving age are rising 
and, since those who leave tend more and more to go on to some form of further 
education, the probability of seeking employment at these ages is falling. How- 
ever, even if we can measure these probabilities over the last twenty years, we 
do not possess a very secure base for projecting over the next twenty years and 
so we can only use simple methods which amount to little more than trend pro- 
jections with allowance for expected sudden changes. The method with which I 
have experimented is the simple epidemic model applied to educational transi- 
tions, the transition at any age to employment being treated as a residual. If 
cs, denotes the transition probability from educational state r to educational 
state s, this model, when expressed in terms of discrete time, takes the form 

(12) Acsr = Pcsr(~ - csr) 

= P F s r  - PC?? 
where A - A- 1 and 0 < y 5 1 denotes the maximum value that c,, can take. 
If (12) is written in continuous time, its integral is a logistic curve and so, with 
time, c,, will move towards y and cannot take on impossible values as it could 
if it were assumed to move along a linear or an exponential time trend. It will 
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often be found that the data are insufficient to determine y at all accurately and 
in this case it will be necessary to select arbitrary values of y out of a plausible 
range and see how much difference the selection makes to projections twenty or 
thirty years into the future. 

(f) The price equation in the forward model. I propose to discuss this equation 
in terms of educational costs though it can, of course, be applied to any other 
costs or, indeed, to gains or the excess of gains over costs of any kind whatsoever. 

Let m denote a vector whose elements measure the educational costs that 
must be incurred this year to educate an individual now in a given state of the 
system. On the assumption that m remains fixed in the future, the total cost to 
be incurred from now on to educate, or complete the education of, an individual 
now in a given state is an element of a vector, k say, where 

k = m + C'm + Cf2m + . . . 
= m + C'k 

= (I - Cf)-lm 

The terms on the right-hand side of the first row of (13) relate to the successive 
years in which educational costs will be incurred. The elements of these vectors 
relate to the present states of individuals multiplied by the probable educational 
costs they will incur this year, next year and so on. 

If it can be assumed that unit costs will change so that, in year 0, m will be 
replaced by ABm, then (13) becomes 

(14) Ic = m + C'Am + Cf2A% + . . . 
= m + C'Nc 

= (I - CIA)- lnz 

Thus if we can estimate Aem for the relevant values of 0 we can allow for changing 
costs. 
- - If it is assumed that the C-matrix will change, Ce must be replaced by 
ce , he-1c. A S - 2 ~ .  . . C. If we define 

then we can write 

(1 6) k = m + C ' h  + (AC C)'A2m + . . . 
= ( I  + C'A + P2h2 + . . .)m 

= ( I  - Ch)-lrn 

Thus if we can estimate AeC for the relevant values of 0 we can allow for changing 
transition probabilities. 

If p denotes the rate of interest, 5 - 1/(1+ p) denotes the discount factor and 
if the states of C are separated by annual intervals (as would be the case if year 
of birth were the primary criterion of classification) it is easy to calculate the 
discounted streams of future costs corresponding to (13). If k* denotes the vector 
of discounted accumulated costs and if C" _= oC, then (13) is replaced by 

(17) k* = ( I  - C"')-lm 

151 



If we have calculated the inverse in (13), we can readily calculate the inverse in 
(17) since 

where the elements of s are descending powers of a, a power being repeated for 
states reached in the same number of time intervals from a fixed point in time. 

These models can be elaborated in various ways, some of which are set out 
in [9, 121. But I think I have said enough to indicate their usefulness in analyzing 
data on human stocks and flows and on the associated costs and benefits. They 
illustrate one way of analyzing stock-flow data but they do not provide the sole 
justification for the matrix framework of section 4 above. A framework for 
recording stocks and flows is needed since coherence and consistency are desir- 
able features in statistics whatever the method of analysis. 

VI. LINKS BETWEEN SEQUENCES 

As I have said, the proposal to divide up life into sequences is made with 
an eye to convenience in the regular reporting of statistics. As matters stand, 
stock statistics of student numbers are often collected by means of an annual 
questionnaire to schools; and it would not be difficult to collect at the same time 
flow statistics by adding a question about the position of each student a year 
ago, as is done in Holland [8]. It would be much more burdensome to require 
schools, as a matter of routine, to report personal and familial information 
about their students. This difficulty would not arise if the information were 
collected from the students and their families, as in the longitudinal study of 
Douglas and others in Britain [2,3] and in the survey of Freytag and Wieszacker 
in Baden-Wiirttemberg [4, 51. This source of information is an expensive one, 
however, and so, if it is used, anything like complete coverage cannot be ex- 
pected. Of course, if statistics are collected by means of a linked system of com- 
patible records or, better still, by a continuously updated, comprehensive system 
of individualized data, a discussion of sequence becomes largely irrelevant since 
the information in the vast, computerized data bank can be combined and ex- 
tracted in any desired manner. But while these may be the methods of statistical 
collection of the future, they are not, with very limited exceptions, in operation 
at present, and so it makes sense to discuss the systematization of social statistics 
in terms of more familiar methods of collection. 

The sequence approach is designed to describe different aspects of liie in their 
own terms. For many purposes of organization and planning this may be quite 
adequate; for instance it enables us to trace the flow of students through the 
educational system and to work out the consequences of any expected changes in 
the structure of this system. If, however, we want to understand why different 
types of individual have very different experiences something more is needed. 
In terms of the sequence itself, we can only say that much depends on the kind 
of school attended and the qualifications obtained at different stages. If we want 
to probe deeper we must introduce into one sequence classifications character- 
istic of other sequences; for instance, we might introduce into the learning 
sequence such additional classifications as the social class of the student's 



family, the urban or rural locality of that family and the early intelligence rating 
of the student himself. If we introduce such factors along with the type of school 
attended, we may hope to throw some light on such qeustions as whether at some 
stage in a student's career the influence of personal and familial characteristics 
wane and are replaced by the institutional characteristics of the school he attends. 

Thus while for some purposes it is essential to combine information from 
different sequences, it is not clear that this requirement should be built into 
the regular reporting system. In the present example, the regular system can be 
regarded as a frame from which samples containing characteristics from many 
sequences could be drawn. 

The models of the preceding section do not depend on the classifications 
used and so can be applied to mixed systems. However, as I have said, these 
models are not the only form of analysis and I have found that the method of 
regression on dummy variables is generally useful in dealing with social problems 
since many of the classifications in which we are interested are not numerical. 

As an example suppose that we can classify the members of a particular 
vintage by sex, social class and intelligence rating and that we are interested in 
the effect of these influences on their scholastic performance. The different types 
of individual can be represented by the rows of a matrix consisting of 0's and 1's. 
For instance, with two sexes, two social classes and three ranges of intelligence, 
we should have 2 x 2 x 3 = 12 types. Adding a column of 1's to represent a 
general factor, the resulting matrix, X* say, would take the form 

In this matrix the twelve types are represented by the twelve rows. A 1 in the 
first column represents the general factor, in the second column being male, in 
the third column being female, in the fourth column being in the upper social 
class and so on. 

With a complete matrix such as X*, the product X*'X* is necessarily singu- 
lar. This can be avoided if we delete one of the columns relating to each of the 
classifications. Let us agree to delete columns 2, 4 and 6 and denote the resulting 
matrix of type (12 x 5) by X. 



If the elements of a vector y denote the proportion of children in one of the 
twelve groups which succeeds in reaching a certain rung on the educationa1 
ladder or passing a certain educational test, then we can regress y on the columns 
of X. The regression equation is 

where b denotes a vector of parameters and e denotes a vector of disturbances. 
The least-squares regression estimator, b* say, of b is 

(21) b* = (X'X)-'X'y 

The elements of b and b* relate to columns 1, 3, 5, 7 and 8 of X*. The coefficients 
relating to columns 2, 4 and 6 are all zero. Thus the calculated proportion of 
boys in the upper social class and the top intelligence range which passes the 
educational test in question is equal to the constant term and the regression 
coefficients measure additions to or substractions from this number in respect of 
other characteristics. For example, the calculated proportion for girls in the lower 
social class and the lowest intelligence range is b, + b, + b, + b, where b, denotes 
the constant term, b, denotes the differential for sex and so on. I shall give some 
examples of this type of analysis in the next section. 

VII. SOME NUMERICAL EXAMPLES 

The following examples illustrate the analysis of social matrices by the 
methods described in the two preceding sections. The first three examples are 
based on matrices of order 114 which I shall not reproduce here since they are, 
in part, already available in [9, 121. They are based on the scheme set out in my 
earlier paper [I 11 and not on the slightly different scheme embodied in the stan- 
dard matrix of table 1 above. These matrices cover the first twenty years of life, 
that is ages 0 through 19, and in them the primary classification is by age, the 
secondary classification is by educational institution attended and the tertiary 
classification is by level of work. This last classification is effective only in the 
case of secondary schools where work is divided between that which precedes 
study for advanced-level examinations (not A-level) and study for these exami- 
nations (A-level). 

The sixth example is based on an all-age (or age-free) matrix of order 44 
relating the whole active sequence. The figures given below are based on the 
standard matrix: a condensed matrix of order 22 based on my earlier scheme is 
set out in [lo]. In using matrices of diirerent sizes there is an aggregation prob- 
lem, the so-called problem of lumpability, which I have not yet investigated in 
this context. It is important, however, since, as Kemeny and Snell show in [7], 
an aggregated version of a system which can be interpreted as a Markov chain 
can only itself be so interpreted if certain conditions are satisfied. 

Let us now turn to the examples. 

(a) The educational experience of two types of nineteen-year-old boy. This 
example illustrates the backward model based on admission probabilities as 
set out in (4) of section 5(a) above. According to the assumptions of this model 
those in a given state at the end of a year come in fixed proportions from the 



states that directly feed that state. Thus from the matrix invese (I - G')-I 
we can estimate the distribution over states in each of the first nineteen years of 
groups of individuals who in their twentieth year, that is at age nineteen, were in 
a given state. By still further reduction of the data we can form the following 
table. 

TABLE 2 

England and Wales, surviving male population at age 19, conditions 
of 1964-65 

- - 

Years 
Not in 

At Full-time 
Activity University Education 

Pre-school home 4.8 4.8 
Nursery, primary and special 

schools 6.8 6.7 
Secondary schools : 

Grammar 5.3 1.3 
Others 1.3 3.1 

Full-time further education n.e.s. - 0.1 
University 1.5 - 
Left full-time education 0.4 4.0 

Total 20.0 20.0 

Note: Components do not always add up to totals because 
of rounding-off errors. 

The figures in this table relate to average experience. Thus, since children 
do not normally change their secondary school (though some exception must 
be made when comprehensive schools are being formed), the table bears out the 
well-known fact that undergraduates tend to come from grammar schools and 
those who have left the educational system by age 19 tend to come from schools 
of a less academic character. 

Instead of dividing secondary school experience by type of school we might 
as easily have divided it by level of work. Had we done so, we should have found 
that, out of 6.6 years at  secondary school, undergraduates spent, on average, 
4.7 years in not A-level work a ~ d  1.9 years in A-level work; whereas the corres- 
sponding figures for those outside the system of full-time formal education are 
4.25 years and 0.15 years respectively. 

All these figures are hypothetical in the sense that they reflect the average 
experience of two groups of boys who lived their lives under the conditions of 
1964-1965. With changing admission probabiliities, the experience of any 
particular vintage of the period would have been somewhat different. 

(b) The seveiz yrars,from 13 through 19. This example illustrates the forward 
model based on transition probabilities as set out in (6) of section 5(a) above. 
Suppose we ask the question: how much time will be spent in different activities 
after a certain age by individuals now in a given state? Table 3 answers this 
question for boys in eight initial states with respect to their average distribution 



TABLE 3 

England and Wales, conditions of 1964-65 
Years 

0. Not in full-time formal education 
1. Nursery and primary - 2. Secondary mordern: (a) not A-level 

VI 
a (b) A-level 

3. Grammar: (a) not A-level 
(b) A-level 

4. Comprehensive: (a) not A-level 
(b) A-level 

5. Other normal: (a) not A-level 
(b) A-level 

6. Special schools 
7. Further education n.e.s. 
8. Colleges of education 
9. Universities 

Age 0 Ages :  Age11: Age13: Age13: Age13: Age13: Age13: 
Nursery and Primary Primary Secondary Grammar Compre- OtherNorma1 

Primary Modern hensive Schools 

Note: Components do not always add up to totals because of rounding-off errors. 

Total 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 



of time during the seven years from the age of 13 through the age of 19, always 
on the assumption that the transition probabilities of 1964-1965 remain 
unchanged. This table is constructed from the entries in an inverse similar to 
( I  - C)-I but restricted to survivors, so that, apart from rounding-off errors, 
the entries in all the columns sum to 7. 

The first column of Table 3 shows the average time that a batch of newborn 
boys could expect to spend in the various activities open to them between the 
ages of 13 and 19. Of this span of seven years, the first two are years of compulsory 
schooling, so that at most five out of the seven could be spent outside the system 
of full-time education. The entry in the first row and first column of the table is 
approximately 3.5, indicating that the average expectation at birth is for 1.5 years 
of voluntary full-time education between the end of compulsory school attendance 
and the age of 20. 

If we compare the first two columns of the table we can see that the average 
expectations at birth are not much changed as we move on to 5-year-olds at 
normal schools. The prospects of these children are slightly better only because 
some of their mentally and physically handicapped contemporaries are at special 
schools. 

A further improvement appears in the third column, relating to boys aged 11, 
the average age of transfer from primary to secondary school. At this age some 
children have already made the transfer, and those who have not yet done so have 
better prospects; the reason for this is that many of them are likely to be attending 
a higher type of primary school, the so-called preparatory school, which keeps 
children up to 13 and is specifically intended to prepare them for a grammar- 
school career. This point is made more evident in the fourth column: the boys who 
are still at primary school at 13 are almost all destined to enter grammar school. 

The remaining four columns show the prospects of 13-year-olds at the four 
types of normal secondary school. The extreme contrast appears between the 
pupils of secondary modern schools and those of grammar schools: the former 
can expect, on average, less than a year of voluntary full-time education between 
the ages of 15 and 19, while the latter can expect more than three years of it over 
the same age-span. An equally marked difference can be seen in the average 
time spent by the two groups on A-level work and at institutions of higher 
education. 

(c) Boys and girls at secondary school. Although the position is changing, 
girls have a smaller expectation than boys of reaching the highest rungs of the 
educational ladder, and it might be supposed that this was partly due to differen- 
tial participation in secondary education. Table 4, which was constructed from 
the entries in matrices of the form ( I  - C)-l, shows the secondary school 
experience of one thousand boys and one thousand girls under the conditions of 
1964-1965. 

This table shows that, on average, girls can expect to spend slightly longer 
at secondary school than boys can; and that, compared with boys, rather more 
time is spent at grammar schools and rather less at secondary modern schools. 
The difference between the sexes is that boys spend less time in work at the lower 
level but relatively much more time in advanced-level work, a moderate degree 
of success in which is required for admission to a university. 
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TABLE 4 

England and Wales, conditions of 1964-65 
-- 

Boys Girls 
Type of 

Secondary School Not Not 
A-level A-level Total A-level A-level Total 

Secondary Modern 2,199 6 2,205 2,153 4 2,157 
Grammar 1,116 315 1,43 1 1,267 232 1,499 
Comprehensive 617 47 663 623 36 659 
Other normal 335 10 345 338 6 344 

Total 4,267 377 4,644 4,381 278 4,659 

Note: Components do not always add up to totals because of rounding-off errors. 

The table tells us about average times and throws no light on their distribu- 
tion. How effective the greater time spent on advanced-level work by boys is 
can only be judged by looking at the qualifications achieved. 

(d) Determinants of educational peuformance. This example relates to the 
method of regression on dummy variables described in the preceding section. 
The results shown are taken from a series of calculations made by Mrs. Mary 
Tuck on the basis of the data collected by Douglas and others as described in 
[2, 31. I am indebted to Dr. Douglas of The M.R.C. Unit on Environmental 
Factors in Mental and Physical Illness and to the Medical Research Council for 
permission to use these data. 

The Douglas survey traces the progression of a sample of about 5,000 
children born in March 1946. In the early '60's these children were completing 
their lower level work at secondary school. With the data available they can be 
classified in a variety of ways which enables us to introduce personal and familial 
characteristics into the analysis of educational performance. In what follows, 
three characteristics are considered; sex, social class (two categories, M to denote 
middle class and W to denote manual working class) and ability and attainment 
rating at age eight, the earliest age available (three categories denoted by 1, 2, 3). 

Let us now examine the probability of passing three successive educational 
hurdles : 

(9 

(ii) 

(iii) 

passing 0-level examinations, but without regard to number, subjects 
or marks; 
passing A-level examinations, but without regard to number, subjects 
or marks; and 
embarking on a first degree course, but without regard to subject. 

In the first of these three cases a good fit is obtained with the form of equa- 
tion given in section 6 above. In the second and third cases, however, this simple 
model, while fitting well enough for working-class boys and middle-class girls, 
does not fit well in the cases of middle-class boys and working-class girls. 
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According to the simple model, the probability that middle-class individuals 
in the first range of ability will pass at least one A-level examination or embark 
on a first degree course is greatly underestimated in the case of boys and greatly 
overestimated in the case of girls, while the reverse is true of individuals in the 
second and third ranges of ability. These defects can largely be removed by 
introducing two additional columns into the X-matrix, one of which has 1's in 
the second and third rows and the other of which has 1's in the eleventh and 
twelfth rows. 

The regression estimates, their standard errors (in brackets) and a measure, 
R2, of goodness of fit are brought together in Table 5 below. 

TABLE 5 

0-level A-level First Degree 
- 

Simple Simple Extended Simple Extended 
Model Model Model Model Model 

Constant term 0.813 0.431 0.528 0.244 0.323 
(0.021) (0.042) (0.014) (0.037) (0.025) 

Sex - 0.003 -0.051 -0.147 - 0.065 -0.145 
(0.01 9) (0.037) (0.013) (0.033) (0.023) 

Social Class - 0.294 -0.166 -0.262 -0.095 -0.174 
(0.019) (0.037) (0.013) (0.033) (0.023) 

Ability range 2 -0.325 -0.217 -0.210 -0.127 -0.131 
(0.023) (0.046) (0.013) (0.041) (0.023) 

Ability range 3 -0.481 -0.259 -0.251 -0.126 -0.131 
(0.023) (0.046) (0.013) (0.041) (0.023) 

MB effect - - -0.158 - -0.111 
(0.018) (0.032) 

WG effect - - 0.130 - 0.127 
(0.018) (0.032) 

It2 0.98 0.82 0.99 0.62 0.91 

In each column of Table 5 the constant term represents the calculated 
probability for middle-class boys in the first range of ability. The entries lower 
down in the column represent the amounts to be added or substracted in respect 
of individuals in other groups. Thus the estimated probability that at least one 
0-level examination will be passed by working-class girls of the second range of 
ability is 0.818 - 0.003 - 0.294 - 0.325 = 0.196; and the corresponding 
estimated probability of embarking on a first degree course is, according to the 
extended model, 0.323 - 0.145 - 0.174 - 0.131 f 0.127 = 0.001 apart from a 
small rounding-off error. 

The estimated probabilities are compared with the observed probabilities in  
Table 6 below. 

A number of conclusions can be drawn from this analysis. 
First, at the 0-level stage there is no significant difference between the sexes 

but social class and ability both have large effects. The difference of effect 
between ability ranges 2 and 3 is large though not as large as the difference of 
effect between ability ranges 1 and 2. 



TABLE 6 

0-level A-level First Degree 

Simple Simple Extended Simple Extended 
Observed Model Observed Model Model Observed Model Model 

Second, at the A-level and first degree stages, which are further removed 
from the ages of compulsory school attendance, a marked difference between the 
sexes emerges. At the same time the gap between ability ranges 2 and 3 gradually 
closes. 

Third, at the two later stages the simple model does not account satis- 
factorily for the performance of middle-class boys or of working-class girls, 
but this defect is largely remedied by the extended model. For middle-class 
boys the difference of effect between those in ability range 1 and ranges 2 and 3 
is substantially increased; while for working-class girls this difference is sub- 
stantially diminished. 

Finally, the models are based on the implicit assumption that the effects 
combine additively to determine the probabilities. The hypothesis that they 
combine multiplicatively was tested by repeating the regression calculations 
replacing the probabilities by their logarithms. The results were markedly less 
satisfactory. 

(e) Staying on at school. A number of experiments have been made in 
projecting transition probabilities and similar measures such as the proportion of 
A-year-olds, where A exceeds the minimum school-leaving age, who are still at 
school. In this type of work a number of problems must be kept in mind. 

In the first place, the necessary data are likely to be available for only a 
comparatively short period. The calculations described below are based on data 
for the fifteen years 1953 through 1967. Other relevant series are available for 
even shorter periods. 

In the second place, while there is a tendency for more and more children 
to remain at school at any given age, the smooth development of this tendency 
is affected by various factors. Several instances can be given: in 1963, some 



children who would otherwise have been able to leave school at the end of an 
autumn term were required to remain at school until the end of the following 
spring term; the growth of comprehensive schools is likely to encourage still more 
the existing tendency to remain at school longer; the school-leaving age was 
raised from 15 to 16 in 1972. 

In the third place, the main purpose of making educational projections is to 
prepare for the expected situation some twenty or thirty years ahead since 
teacher-training programmes take time to work out and it is difficult to change 
teaching methods rapidly. 

In the fourth place, and largely because of what has just been said, 
unbounded trends, such as linear or exponential trends, are dangerous. It seems 
desirable to work with sigmoid trends and these can be plausibly rationalized 
in terms of the simple epidemic model set out in (12) of section 5(e) above. 
However, in using this kind of trend allowance must be made for the sudden 
jumps already referred to. 

In the fifth place, there are many plausible ways of fitting logistic trends. 
In the present context all of them give good fits as, indeed, do unbounded trends. 
But they give very different estimates of the two parameters, j3 and y, and this is 
particularly important in the case of y, the upper bound of the probability. 
As a consequence it is desirable to check the sensitivity of projections over the 
relevant range to the value of y adopted and, if possible, to obtain an exogenous 
estimate of y. 

TABLE 7 

THE PROPORTION OF BOYS STILL AT SCHOOL AT AGES 16 THROUGH 19 

England and Wales 

Group Age I 
16 

Actual 
Calculated (i) 

(ii) 
(iii) 
(iv) 

17 

18 

19 

Actual 
Calculated (i) 

(ii) 
(iii) 
(iv) 

Actual 
Calculated (i) 

(ii) 
(iii) 
(i v) 

Actual 
Calculated (i) 

(ii) 
(iii) 
(iv) 



These remarks are exemplified by the results given in Table 7 below. This 
table relates to the probabilities that boys of different ages from 16 through 19 
will still be at  school. The methods used in fitting the various regressions were 
devised by Mr. Allan Gordon, who also carried out the calculations. The results 
are tabulated here to three places of decimals only though three significant figures 
were used in fitting the equations. 

If (12) is divided by c,,, the relative change in the coefficient is expressed as 
a declining linear function of the level of the coefficient. Experience shows that 
this folmulation leads to hopelessly inaccurate estimates of /3 and y. Accordingly 
(12) was rewritten in continuous time and integrated to give 

(22) C,, = - 
Y 

1 + exp(a - pye) 

where or = log,[(y/c,,) - I]. In this expression cSr denotes the iriitial values of 
c,, a t  time 0 = 0. Equation (22) can be written in the form 

and this equation forms the basis of the estimation methods employed. 
In method (i) of Table 7, an initial value, yo say, of y is assumed and (23) 

is used to estimate cc and p. The estimate of a implies a new estimate, y, say, of y 
and this value provides the basis for a second calculation. This iterative process 
converges and the final estimates of ,8 and y are adopted. 

Method (ii) is similar to method (i) except that y is obtained by ensuring that 
the median of the observed values of c,, corresponds to a value of the dependent 
variable in (23) equal to the centroid of the regression line. 

Method (iii) consists of working out the regression, (23) for many values of 
y and choosing that value which maximizes r2. If this value > I ,  then the estimate 
y = 1 is adopted. 

Method (iv) makes use of an exogenous estimate of y.  

In Table 7 the values of y are shown in the final column. We can see from the 
table that we are dealing with a situation which is undergoing substantial 
changes so that the projected values of the coefficients are much greater than the 
values in the period of observation. In the case of the 16-year-olds, but not in the 
other cases, an allowance was made for a jump in 1972. 

The calculated values of y for the 16-year-olds are high and lie on either 
side of the exogeneous value. For the 17-year-olds, only the value of y obtained 
by method (i) is at all similar to the exogenous estimate, the others being sub- 
stantially lower. For the IS- and 19-year-olds the calculated values of y are all 
substantially below the exogenous estimate. 

This example illustrates the importance of trying to project coefficients as 
well as the difficulty of doing so. If anything like the projected changes comes 
about, a great deal of preparation will be needed. Moreover, these changes will 
affect not only the educational system but also labour relations and the organiza- 
tion of the labour market. 

(f) Life expectancies and their composition. This example illustrates the use 
of the age-free matrix inverse (I - C)-I for the calculation of life expectancies 
and their composition. The figures given below are taken from a table of the 



kind given in [lo] but recalculated in the form of the standard matrix used in this 
paper. 

In this case the states of the initial stock-flow matrix of the active sequence 
are defined without regard to age. In it, individuals enter their pre-school home, 
stay in it for an unspecified time, move into the school system, progress through it 
until a t  some age they leave and are then classified by their leaving qualifications. 
After that they enter some form of further or higher education or take a job. 
Once in the labour force, most males remain in it, though they may return for a 
while to the educational system as students, until, if they survive long enough, 
they eventually retire. 

A matrix of this kind was estimated for the male population of England and 
Wales in 1966. Since the population is not in stationary equilibrium, this matrix 
had to be adjusted; the methods used and their short-comings are discussed in 
[lo]. From the adjusted matrix a C-matrix was calculated and from this a matrix 
inverse, (I - C)-l, was derived. 

If the estimates were accurate, this inverse would have the following proper- 
ties. 

(i) The diagonal elements measure the mean time spent in a state by an 
individual about to enter that state. 

(ii) The off-diagonal elements measure the mean time spent in the state to 
which the row refers multiplied by the probability of reaching that 
state from the state to which the column refers. 

(iii) The sum of the elements in a column measures the expectation of life 
of an individual about to enter the state to which the column refers. 

(iv) From the life table we can discover the age at which a column sum is 
the expectation of life. This age is the average age at which individuals 
enter the state to which the column refers. 

Although there are difficulties in combining demographic, educational and 
manpower statistics to give an accurate and consistent picture and although there 
are further difficulties in carrying out the adjustment to conditions of stationary 
equilibrium, the results obtained are reasonably reassuring. Thus, the male 
expectation of life at  birth works out to 69.2 years compared with the official 
estimate of 68.5 years calculated by orthodox methods. The expectation of life 
on retirement is 10.4 years which implies that in 1966 British males retired on 
average at the age of 67. The years of retirement expected at birth are 6.64 and so 
6.64110.42 = 0.64 is the expectation at birth of surviving to retirement. 

According to the matrix, the expectation of life at birth of 69.2 years is divided 
into the following partial expectancies; pre-school home, 5.1 years; education, 
13.1 years; economic activity 44.4 years; and retirement 6.6 years. There is little 
doubt that the first two of these numbers are somewhat too high and that the third 
is somewhat too low. The picture is not very bad but more work is needed on the 
basic data and their adjustment. 

As a final example of the use of this matrix let us see how the probability 
of going to a university changes with progression through the educational system. 
At birth the expectation is 0.08. If a boy leaves his secondary school with two or 



more A-level certificates, the requirement for admission to a univerisity, this 
probability rises to 0.60. If, on the other hand, he leaves without even any 0-level 
certificates, the probability drops to 0.02. This figure may well be too high but, 
in the British system, it is at least possible to repair a disastrous school career at a 
later stage in an institution of further education; and a certain number of indi- 
viduals avail themselves of this possibility. 

(g) Rejerrals in a psychiatvic service system. In [I], Baldwin gives a very 
interesting input-output table relating to the psychiatric service system of North- 
east Scotland which is centred on Aberdeen. This system is divided into nine 
branches as shown in Tables 8 and 9 below. The flows into, within and out of this 
system are termed "referrals"; a patient is referred into one of the branches of the 
system, or from one branch to another or out of the system altogether. 

TABLE 8 

DIRECT REFERRALS WITHIN THE SYSTEM PER 1,000 NEW ENTRANTS INTO EACH 
STATE OF THE PSYCHIATRIC SERVICE SYSTEM OF NORTH-EAST SCOTLAND IN 1965 

1,000 C 

1. Out-patients 
2.  In-patients 
3 .  Day-patients 
4. Domiciliary visits 
5. Domiciliary treatment 
6. Hospital consultations 
7. Other emergencies 
8. In-patient follow-up 
9. Other psychiatric 

Total 264 426 785 729 201 535 486 246 972 

The pattern of referrals within the system as set out in 111 is reproduced in 
Table 8. This can be interpreted as a C-matrix with each element multiplied by 
1,000. Thus we can see from column 1 of Table 8 that, if 1,000 patients are re- 
ferred into the system as out-patients, the direct effect is that 264 referrals will be 
made within the system and the balance, 736, will be referred out of the system. 
However, the 264 who are referred to another branch of the system, such as the 
205 who are referred to in-patient treatment, will not all leave the system from that 
branch. As can be seen from column 2, over 30 per cent of those referred for 
in-patient treatment are next referred for in-patient follow-up. And of these, 
as can be seen from column 8, over 17 per cent are referred back for in-patient 
treatment. As a consequence, many indirect referrals will be made before the 
intake of 1,000 into any branch all succeed in getting out of the system. On the 
usual assumptions, the numbers can be calculated by forming the matrix inverse 
(I - C)-l, as set out in Table 9. 
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Table 9 shows the direct and indirect consequences of 1,000 referrals from 
outside into any branch of the system. By combining Tables 8 and 9 we can see, 
for instance, that the entry of 1,033 in row 1 and column 1 of Table 9 can be 
decomposed into 1,000 f 9 f 24 = 1,033. This means that the initial referral 
of 1,000 individuals to branch 1 of the system from outside generates 9 additional 
referrals directly and a further 24 referrals indirectly. From row 2 and column 1 
of the two tables we can see that 205 + 49 = 254, so that the initial referral of 
1,000 individuals to branch 1 leads to 205 direct referrals and 49 indirect referrals 
to branch 2. Summing the entries in column 1 of Table 9 we obtain a figure of 
1,440, indicating that if 1,000 patients are referred into the system at branch 1, 
440 additional referrals will be made before the initial 1,000 have all left the 
system. 

TABLE 9 

1. Out-patients 
2. In-patients 
3. Day-patients 
4. Domiciliary visits 
5. Domiciliary treatment 
6. Hospital consultations 
7. Other emergencies 
8. In-patients follow-up 
9. Other psychiatric 

Total / 1,440 1,624 2,186 2,169 1,318 1,841 1,784 1,391 2,533 

-- - -- 

Note: Components do not always add to totals because of rounding-off errors. 

A similar interpretation can be put on the entries in the other columns of 
Table 9. But as in all such cases, these calculations are only strictly justified if 
the probabilities of movement from a state are independent of the path by which 
that state has been reached. It may well be that this condition is not satisfied 
with the states used in my example; and I must emphasize that it is only an 
example, even if the results are not wholly implausible. What is more important 
is that where a register has existed for some time it would be possible to test the 
assumption and to discover ways of defining states so that it is approximately 
satisfied. An example of how this might be done is given by Hall in [6] .  

VIII. CONCLUSION 

I have little to add by way of conclusion. I have tried to show that the division 
of life into sequences provides a manageable basis for the regular collection of 



statistics on human stocks and flows; and, further, that the standard matrix 
provides a convenient method of arranging these statistics which is particularly 
useful from a purely technical point of view if' they are collected by different 
agencies, as is frequently the case. Some of my examples are intended to show 
that there are many uses for information obtained from a single sequence, but 
there is no denying that other uses require the combination of classifications 
from two or more sequences. I see this as something it would be difficult to work 
into a regular reporting system but which could be dealt with from time to time 
using the regular system as a sampling frame. 

Much of the paper is based on the assumption that countries are likely for 
the time being to make use of traditional methods of data collect~on over a large 
part of the field of social statistics. The division of life into sequences would, as I 
have said, be largely irrelevant with a continuously updated, comprehensive 
system of individualized data. I believe that in most countries we are a long way 
off such a system which would be expensive, technically difficult in practice and 
not without its political dangers. In the meantime, I believe that a great deal of 
useful information could be obtained from comparatively minor modifications 
of what I have called traditional methods. 
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